1 Introducción
El procedimiento de generación de tablas de contingencia trae problemas si se consideran varias tablas referidas por ejemplo a varios años, cuyas categorías de divergen.
Se intenta extraer todo tipo de subjetividad.
1.1 Aca se extraen solo las categorias unicas de cada año:
r1a_cod. ¿Cuál es esa otra nacionalidad? (código país)
Ésta pregunta sólo se comenzó a aplicar en la Casen del 2011 y hasta la versión 2017
casen_2006 <<- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2006_c.rds")
casen_2006 <- mutate_if(casen_2006, is.factor, as.character)
casen_2009 <<- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2009_c.rds")
casen_2009 <- mutate_if(casen_2009, is.factor, as.character)
casen_2011 <<- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2011_c.rds")
casen_2011 <- mutate_if(casen_2011, is.factor, as.character)
casen_2013 <<- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2013_c.rds")
casen_2013 <- mutate_if(casen_2013, is.factor, as.character)
casen_2015 <<- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2015_c.rds")
casen_2015 <- mutate_if(casen_2015, is.factor, as.character)
casen_2017 <<- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2017_c.rds")
casen_2017 <- mutate_if(casen_2017, is.factor, as.character)
casen_2020 <<- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2020.rds")
casen_2020 <- mutate_if(casen_2020, is.factor, as.character)
cod_com <- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/codigos_comunales_2006-2020.rds")
names(cod_com)[2] <- "comuna"Homologación de alfabetismo
casen_2006$E1[casen_2006$E1 == "No sabe /Sin dato"] <- NA
casen_2011$e1[casen_2011$e1 == "Sí, lee y escribe"] <- "Sí"
casen_2011$e1[casen_2011$e1 == "No, sólo lee"] <- "No"
casen_2011$e1[casen_2011$e1 == "No, ninguno"] <- "No"
casen_2011$e1[casen_2011$e1 == "No, sólo escribe"] <- "No"
casen_2013$e1[casen_2013$e1 == "Sí, lee y escribe"] <- "Sí"
casen_2013$e1[casen_2013$e1 == "No, ninguno"] <- "No"
casen_2013$e1[casen_2013$e1 == "No, sólo lee"] <- "No"
casen_2013$e1[casen_2013$e1 == "No, sólo escribe"] <- "No"
casen_2013$e1[casen_2013$e1 == "NS/NR"] <- NA
casen_2015$e1[casen_2015$e1 == "Sí, lee y escribe"] <- "Sí"
casen_2015$e1[casen_2015$e1 == "No, ninguno"] <- "No"
casen_2015$e1[casen_2015$e1 == "No, sólo lee"] <- "No"
casen_2015$e1[casen_2015$e1 == "No, sólo escribe"] <- "No"
casen_2017$e1[casen_2017$e1 == "Sí, lee y escribe"] <- "Sí"
casen_2017$e1[casen_2017$e1 == "No, sólo lee"] <- "No"
casen_2017$e1[casen_2017$e1 == "No, ninguno"] <- "No"
casen_2017$e1[casen_2017$e1 == "No sabe/responde"] <- NA
casen_2017$e1[casen_2017$e1 == "No, sólo escribe"] <- "No"Homologación de etnia
fn_etnia <- function(union){
union$Etnia[union$Etnia == "Aimara" ] <- "Aymara"
union$Etnia[union$Etnia == "No pertenece a ninguno de estos pueblos indígenas" ] <- "No pertenece a ningún pueblo indígena"
union$Etnia[union$Etnia == "Mapuche"] <- "Mapuche"
union$Etnia[union$Etnia == "Diaguita"] <- "Diaguita"
union$Etnia[union$Etnia == "Atacameño" ] <- "Atacameño"
union$Etnia[union$Etnia == "Atacameño (Likan-Antai)" ] <- "Atacameño"
union$Etnia[union$Etnia == "Atacameño (Likán Antai)" ] <- "Atacameño"
union$Etnia[union$Etnia == "Atacameño (Likán-Antai)" ] <- "Atacameño"
union$Etnia[union$Etnia == "Quechua" ] <- "Quechua"
union$Etnia[union$Etnia == "Yámana o Yagán" ] <- "Yagán"
union$Etnia[union$Etnia == "Yagan" ] <- "Yagán"
union$Etnia[union$Etnia == "Yagán (Yámana)" ] <- "Yagán"
union$Etnia[union$Etnia == "Rapa-Nui o Pascuenses"] <- "Pascuense"
union$Etnia[union$Etnia == "Rapa-Nui"] <- "Pascuense"
union$Etnia[union$Etnia == "Rapa Nui (Pascuense)"] <- "Pascuense"
union$Etnia[union$Etnia == "Rapa Nui"] <- "Pascuense"
union$Etnia[union$Etnia == "Collas"] <- "Coya"
union$Etnia[union$Etnia == "Kawashkar o Alacalufes" ] <- "Alacalufe"
union$Etnia[union$Etnia == "Kawashkar" ] <- "Alacalufe"
union$Etnia[union$Etnia == "Kawésqar (Alacalufes)" ] <- "Alacalufe"
union$Etnia[union$Etnia == "Kawésqar" ] <- "Alacalufe"
union$Etnia[union$Etnia == "Kawaskar" ] <- "Alacalufe"
union$Etnia[union$Etnia == "Chango" ] <- "Chango"
union$Etnia[union$Etnia == "Sin dato"] <- NA
union$Etnia[union$Etnia == "NS/NR" ] <- NA
union$Etnia[union$Etnia == "No sabe/no responde" ] <- NA
union <<- union
}Homologación de migración
for (i in unique(casen_2020$r2_pais_esp)) {
pais <- gsub("(^[[:space:]]+|[[:space:]]+$)", "", i)
pais <- tolower(pais)
casen_2020$r2_pais_esp[casen_2020$r2_pais_esp == i] <- str_to_title(pais)
}
casen_2011$r2p_cod[casen_2011$r2p_cod == "No contesta"] <- "NS/NR"
casen_2013$r2_p_cod[casen_2013$r2_p_cod == "No contesta"] <- "NS/NR"
casen_2015$r2espp_cod[casen_2015$r2espp_cod == "No contesta"] <- "NS/NR"
casen_2017$r2_p_cod[casen_2017$r2_p_cod == "No Bien Especificado"] <- "NS/NR"
casen_2017$r2_p_cod[casen_2017$r2_p_cod == "No Responde"] <- "NS/NR"
casen_2020$r2_pais_esp[casen_2020$r2_pais_esp == "No Bien Especificado"] <- "NS/NR"
casen_2020$r2_pais_esp[casen_2020$r2_pais_esp == ""] <- NA1.2 Se obtiene el universo de categorías para r1a_cod cada año
ab <- casen_2011
unique_d_2011 <- unique(ab$h11e_esp)
ab <- casen_2013
unique_d_2013 <- unique(ab$r1a_cod)
ab <- casen_2015
unique_d_2015 <- unique(ab$r1aesp_cod)
ab <- casen_2017
unique_d_2017 <- unique(ab$r1a_cod)2 Diccionario
Se unen todas las categorías de respuesta, se excluyen las repetidas y se les asocia un código:
unique_d_2011 <- as.data.frame(unique_d_2011)
colnames(unique_d_2011)[1] <- "superduper"
unique_d_2013 <- as.data.frame(unique_d_2013)
colnames(unique_d_2013)[1] <- "superduper"
unique_d_2015 <- as.data.frame(unique_d_2015)
colnames(unique_d_2015)[1] <- "superduper"
unique_d_2017 <- as.data.frame(unique_d_2017)
colnames(unique_d_2017)[1] <- "superduper"
el_total <- rbind( unique_d_2011, unique_d_2013, unique_d_2015, unique_d_2017 )
el_total_final <- unique(el_total)
el_total_final$observation <- 1:nrow(el_total_final)
datatable(el_total_final, extensions = 'Buttons', escape = FALSE, rownames = FALSE,
options = list(dom = 'Bfrtip',
buttons = list('colvis', list(extend = 'collection',
buttons = list(
list(extend='copy'),
list(extend='excel',
filename = 'tabla_Diccionario'),
list(extend='pdf',
filename= 'tabla_Diccionario')),
text = 'Download')), scrollX = TRUE))dataf1 <- data.frame()
for (n in 1:nrow(el_total_final)) {
dataf1 <- rbind(dataf1,paste0("m['r1a_cod'][m['r1a_cod'] == '",el_total_final[n,1],"']"," <- '",el_total_final[n,2],"'"))
}
dataf1 <- as.data.frame(dataf1)
write_xlsx(dataf1,"el_total_final.xlsx")
la_correccion <- function(m) {
m['r1a_cod'][m['r1a_cod'] == 'NA'] <- '1'
m['r1a_cod'][m['r1a_cod'] == 'Ecuador'] <- '2'
m['r1a_cod'][m['r1a_cod'] == 'Argentina'] <- '3'
m['r1a_cod'][m['r1a_cod'] == 'Perú'] <- '4'
m['r1a_cod'][m['r1a_cod'] == 'Bolivia'] <- '5'
m['r1a_cod'][m['r1a_cod'] == 'Colombia'] <- '6'
m['r1a_cod'][m['r1a_cod'] == 'Brasil'] <- '7'
m['r1a_cod'][m['r1a_cod'] == 'No bien especificado'] <- '8'
m['r1a_cod'][m['r1a_cod'] == 'Marruecos'] <- '9'
m['r1a_cod'][m['r1a_cod'] == 'Paraguay'] <- '10'
m['r1a_cod'][m['r1a_cod'] == 'Alemania'] <- '11'
m['r1a_cod'][m['r1a_cod'] == 'Uruguay'] <- '12'
m['r1a_cod'][m['r1a_cod'] == 'Guatemala'] <- '13'
m['r1a_cod'][m['r1a_cod'] == 'Venezuela'] <- '14'
m['r1a_cod'][m['r1a_cod'] == 'República Dominicana'] <- '15'
m['r1a_cod'][m['r1a_cod'] == 'México'] <- '16'
m['r1a_cod'][m['r1a_cod'] == 'Holanda'] <- '17'
m['r1a_cod'][m['r1a_cod'] == 'Estados Unidos'] <- '18'
m['r1a_cod'][m['r1a_cod'] == 'No contesta'] <- '19'
m['r1a_cod'][m['r1a_cod'] == 'España'] <- '20'
m['r1a_cod'][m['r1a_cod'] == 'Costa Rica'] <- '21'
m['r1a_cod'][m['r1a_cod'] == 'Francia'] <- '22'
m['r1a_cod'][m['r1a_cod'] == 'Canadá'] <- '23'
m['r1a_cod'][m['r1a_cod'] == 'Japón'] <- '24'
m['r1a_cod'][m['r1a_cod'] == 'Italia'] <- '25'
m['r1a_cod'][m['r1a_cod'] == 'Bélgica'] <- '26'
m['r1a_cod'][m['r1a_cod'] == 'Noruega'] <- '27'
m['r1a_cod'][m['r1a_cod'] == 'Suiza'] <- '28'
m['r1a_cod'][m['r1a_cod'] == 'Rumanía'] <- '29'
m['r1a_cod'][m['r1a_cod'] == 'Cuba'] <- '30'
m['r1a_cod'][m['r1a_cod'] == 'Honduras'] <- '31'
m['r1a_cod'][m['r1a_cod'] == 'Rusia'] <- '32'
m['r1a_cod'][m['r1a_cod'] == 'Hungría'] <- '33'
m['r1a_cod'][m['r1a_cod'] == 'India'] <- '34'
m['r1a_cod'][m['r1a_cod'] == 'Filipinas'] <- '35'
m['r1a_cod'][m['r1a_cod'] == 'Pakistán'] <- '36'
m['r1a_cod'][m['r1a_cod'] == 'China'] <- '37'
m['r1a_cod'][m['r1a_cod'] == 'Indonesia'] <- '38'
m['r1a_cod'][m['r1a_cod'] == 'Panamá'] <- '39'
m['r1a_cod'][m['r1a_cod'] == 'Otro país de Europa'] <- '40'
m['r1a_cod'][m['r1a_cod'] == 'Otro país de Asia'] <- '41'
m['r1a_cod'][m['r1a_cod'] == 'Reino Unido'] <- '42'
m['r1a_cod'][m['r1a_cod'] == 'Irlanda'] <- '43'
m['r1a_cod'][m['r1a_cod'] == 'Australia'] <- '44'
m['r1a_cod'][m['r1a_cod'] == 'Austria'] <- '45'
m['r1a_cod'][m['r1a_cod'] == 'Polonia'] <- '46'
m['r1a_cod'][m['r1a_cod'] == 'Haití'] <- '47'
m['r1a_cod'][m['r1a_cod'] == 'El Salvador'] <- '48'
m['r1a_cod'][m['r1a_cod'] == 'Libia'] <- '49'
m['r1a_cod'][m['r1a_cod'] == 'Kenia'] <- '50'
m['r1a_cod'][m['r1a_cod'] == 'Grecia'] <- '51'
m['r1a_cod'][m['r1a_cod'] == 'Eslovenia'] <- '52'
m['r1a_cod'][m['r1a_cod'] == 'Suecia'] <- '53'
m['r1a_cod'][m['r1a_cod'] == 'Siria'] <- '54'
m['r1a_cod'][m['r1a_cod'] == 'Portugal'] <- '55'
m['r1a_cod'][m['r1a_cod'] == 'Serbia'] <- '56'
m['r1a_cod'][m['r1a_cod'] == 'Líbano'] <- '57'
m['r1a_cod'][m['r1a_cod'] == 'Ucrania'] <- '58'
m['r1a_cod'][m['r1a_cod'] == 'Otro país de Africa'] <- '59'
m['r1a_cod'][m['r1a_cod'] == 'Tailandia'] <- '60'
m['r1a_cod'][m['r1a_cod'] == 'Nicaragua'] <- '61'
m['r1a_cod'][m['r1a_cod'] == 'Puerto Rico'] <- '62'
m['r1a_cod'][m['r1a_cod'] == 'Corea del Sur'] <- '63'
m['r1a_cod'][m['r1a_cod'] == 'Kirguistán'] <- '64'
m['r1a_cod'][m['r1a_cod'] == 'Nueva Zelanda'] <- '65'
m['r1a_cod'][m['r1a_cod'] == 'Turquía'] <- '66'
m['r1a_cod'][m['r1a_cod'] == 'Croacia'] <- '67'
m['r1a_cod'][m['r1a_cod'] == 'Israel'] <- '68'
m['r1a_cod'][m['r1a_cod'] == 'Jordania'] <- '69'
m['r1a_cod'][m['r1a_cod'] == 'Albania'] <- '70'
m['r1a_cod'][m['r1a_cod'] == 'Qatar'] <- '71'
m['r1a_cod'][m['r1a_cod'] == 'Lituania'] <- '72'
m['r1a_cod'][m['r1a_cod'] == 'Dinamarca'] <- '73'
m['r1a_cod'][m['r1a_cod'] == 'Argelia'] <- '74'
m['r1a_cod'][m['r1a_cod'] == 'Angola'] <- '75'
m['r1a_cod'][m['r1a_cod'] == 'Egipto'] <- '76'
m['r1a_cod'][m['r1a_cod'] == 'República Checa'] <- '77'
m['r1a_cod'][m['r1a_cod'] == 'Eslovaquia'] <- '78'
m['r1a_cod'][m['r1a_cod'] == 'Etiopía'] <- '79'
m['r1a_cod'][m['r1a_cod'] == 'No Responde'] <- '80'
m['r1a_cod'][m['r1a_cod'] == 'República Democrática Del Congo'] <- '81'
m['r1a_cod'][m['r1a_cod'] == 'Palestina'] <- '82'
m['r1a_cod'][m['r1a_cod'] == 'Sri Lanka'] <- '83'
m['r1a_cod'][m['r1a_cod'] == 'No Bien Especificado'] <- '84'
m['r1a_cod'][m['r1a_cod'] == 'Sudáfrica'] <- '85'
m['r1a_cod'][m['r1a_cod'] == 'Corea Del Sur'] <- '86'
m['r1a_cod'][m['r1a_cod'] == 'Finlandia'] <- '87'
m['r1a_cod'][m['r1a_cod'] == 'Nigeria'] <- '88'
m['r1a_cod'][m['r1a_cod'] == 'Ghana'] <- '89'
mm <<- m
}3 Etnia
3.0.0.1 2011
Generamos las tablas de contingencia tal como acostumbramos:
ab <- casen_2011
b <- ab$comuna
c <- ab$h11e_esp
d <- ab$r6
e <- ab$sexo
f <- ab$e1
cross_tab = xtabs(ab$expc_full ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f),aggregate(ab$expc_full ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f) ,ab,mean))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2011"
names(d)[1] <- "comuna"
names(d)[2] <- "r1a_cod"
names(d)[3] <- "Etnia"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
d$cod <- d[,2]
d <- d[,c(1,8,2,3,4,5,6,7)]
d_2011 <- d
d_2011 <- mutate_if(d_2011, is.factor, as.character)
la_correccion(d_2011)
names(mm)[2] <- paste0(colnames(mm)[3])
names(mm)[3] <- paste0("cod_",colnames(mm)[3])
mm_11 <- mm3.0.0.2 2013
Generamos las tablas de contingencia tal como acostumbramos:
ab <- casen_2013
b <- ab$comuna
c <- ab$r1a_cod
d <- ab$r6
e <- ab$sexo
f <- ab$e1
cross_tab = xtabs(ab$expc ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f),aggregate(ab$expc ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f) ,ab,mean))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2013"
names(d)[1] <- "comuna"
names(d)[2] <- "r1a_cod"
names(d)[3] <- "Etnia"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
d$cod <- d[,2]
d <- d[,c(1,8,2,3,4,5,6,7)]
d_2013 <- d
d_2013 <- mutate_if(d_2013, is.factor, as.character)
la_correccion(d_2013)
names(mm)[2] <- paste0(colnames(mm)[3])
names(mm)[3] <- paste0("cod_",colnames(mm)[3])
mm_13 <- mm3.0.0.3 2015
Generamos las tablas de contingencia tal como acostumbramos:
ab <- casen_2015
b <- ab$comuna
c <- ab$r1aesp_cod
d <- ab$r3
e <- ab$sexo
f <- ab$e1
cross_tab = xtabs(ab$expc_todas ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f),aggregate(ab$expc_todas ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f) ,ab,mean))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2015"
names(d)[1] <- "comuna"
names(d)[2] <- "r1a_cod"
names(d)[3] <- "Etnia"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
d$cod <- d[,2]
d <- d[,c(1,8,2,3,4,5,6,7)]
d_2015 <- d
d_2015 <- mutate_if(d_2015, is.factor, as.character)
la_correccion(d_2015)
names(mm)[2] <- paste0(colnames(mm)[3])
names(mm)[3] <- paste0("cod_",colnames(mm)[3])
mm_15 <- mm3.0.0.4 2017
Generamos las tablas de contingencia tal como acostumbramos:
ab <- casen_2017
b <- ab$comuna
c <- ab$r1a_cod
d <- ab$r3
e <- ab$sexo
f <- ab$e1
cross_tab = xtabs(ab$expc ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f),aggregate(ab$expc ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f) ,ab,mean))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
names(d)[1] <- "comuna"
names(d)[2] <- "r1a_cod"
names(d)[3] <- "Etnia"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
d$cod <- d[,2]
d <- d[,c(1,8,2,3,4,5,6,7)]
d_2017 <- d
d_2017 <- mutate_if(d_2017, is.factor, as.character)
la_correccion(d_2017)
names(mm)[2] <- paste0(colnames(mm)[3])
names(mm)[3] <- paste0("cod_",colnames(mm)[3])
mm_17 <- mm4 Tabla final etnia
union <- rbind(mm_11,mm_13,mm_15,mm_17)
fn_etnia(union)
union$cod_sexo <- union$Sexo
union$cod_sexo[union$cod_sexo == "Hombre"] <- "01"
union$cod_sexo[union$cod_sexo == "Mujer"] <- "02"
union$cod_alfa <- union$`Sabe leer?`
union$cod_alfa[union$cod_alfa == "Sí"] <- "01"
union$cod_alfa[union$cod_alfa == "No"] <- "02"
Etnia <- c(sort(unique(union$Etnia)[-6]),"No pertenece a ningún pueblo indígena",NA)
Etnia<- as.data.frame(Etnia)
Etnia$cod_etnia <- paste("00",seq(1:nrow(Etnia)), sep = "")
codigos <- Etnia$cod_etnia
rango <- seq(1:nrow(Etnia))
cadena <- paste("",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(1),4)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
codigos <- cbind(Etnia,cadena)
colnames(codigos) <- c("Etnia","cadena","cod_etnia")
tab_f <- merge(x=union, y=codigos, by="Etnia")
tab_f <- merge(x = tab_f, y = cod_com, by = "comuna")
tab_f <- tab_f[,c(1,13,3,4,2,12,5,9,6,10,7,8)]
datatable(union, extensions = 'Buttons', escape = FALSE, rownames = FALSE,
options = list(dom = 'Bfrtip',
buttons = list('colvis', list(extend = 'collection',
buttons = list(
list(extend='copy'),
list(extend='excel',
filename = 'tabla_ytotcor_e5a'),
list(extend='pdf',
filename= 'tabla_ytotcor_e5a')),
text = 'Download')), scrollX = TRUE))
5 Migración
5.0.0.1 2011
Generamos las tablas de contingencia tal como acostumbramos:
ab <- casen_2011
b <- ab$comuna
c <- ab$h11e_esp
d <- ab$r2p_cod
e <- ab$sexo
f <- ab$e1
cross_tab = xtabs(ab$expc_full ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f),aggregate(ab$expc_full ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f) ,ab,mean))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2011"
names(d)[1] <- "comuna"
names(d)[2] <- "r1a_cod"
names(d)[3] <- "Migracion"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
d$cod <- d[,2]
d <- d[,c(1,8,2,3,4,5,6,7)]
d_2011 <- d
d_2011 <- mutate_if(d_2011, is.factor, as.character)
la_correccion(d_2011)
names(mm)[2] <- paste0(colnames(mm)[3])
names(mm)[3] <- paste0("cod_",colnames(mm)[3])
mm_11 <- mm5.0.0.2 2013
Generamos las tablas de contingencia tal como acostumbramos:
ab <- casen_2013
b <- ab$comuna
c <- ab$r1a_cod
d <- ab$r2_p_cod
e <- ab$sexo
f <- ab$e1
cross_tab = xtabs(ab$expc ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f),aggregate(ab$expc ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f) ,ab,mean))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2013"
names(d)[1] <- "comuna"
names(d)[2] <- "r1a_cod"
names(d)[3] <- "Migracion"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
d$cod <- d[,2]
d <- d[,c(1,8,2,3,4,5,6,7)]
d_2013 <- d
d_2013 <- mutate_if(d_2013, is.factor, as.character)
la_correccion(d_2013)
names(mm)[2] <- paste0(colnames(mm)[3])
names(mm)[3] <- paste0("cod_",colnames(mm)[3])
mm_13 <- mm5.0.0.3 2015
Generamos las tablas de contingencia tal como acostumbramos:
ab <- casen_2015
b <- ab$comuna
c <- ab$r1aesp_cod
d <- ab$r2espp_cod
e <- ab$sexo
f <- ab$e1
cross_tab = xtabs(ab$expc_todas ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f),aggregate(ab$expc_todas ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f) ,ab,mean))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2015"
names(d)[1] <- "comuna"
names(d)[2] <- "r1a_cod"
names(d)[3] <- "Migracion"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
d$cod <- d[,2]
d <- d[,c(1,8,2,3,4,5,6,7)]
d_2015 <- d
d_2015 <- mutate_if(d_2015, is.factor, as.character)
la_correccion(d_2015)
names(mm)[2] <- paste0(colnames(mm)[3])
names(mm)[3] <- paste0("cod_",colnames(mm)[3])
mm_15 <- mm5.0.0.4 2017
Generamos las tablas de contingencia tal como acostumbramos:
ab <- casen_2017
b <- ab$comuna
c <- ab$r1a_cod
d <- ab$r2_p_cod
e <- ab$sexo
f <- ab$e1
cross_tab = xtabs(ab$expc ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f),aggregate(ab$expc ~ unlist(b) + unlist(c) + unlist(d) + unlist(e) + unlist(f) ,ab,mean))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
names(d)[1] <- "comuna"
names(d)[2] <- "r1a_cod"
names(d)[3] <- "Migracion"
names(d)[4] <- "Sexo"
names(d)[5] <- "Sabe leer?"
names(d)[6] <- "Frecuencia"
names(d)[7] <- "Año"
d$cod <- d[,2]
d <- d[,c(1,8,2,3,4,5,6,7)]
d_2017 <- d
d_2017 <- mutate_if(d_2017, is.factor, as.character)
la_correccion(d_2017)
names(mm)[2] <- paste0(colnames(mm)[3])
names(mm)[3] <- paste0("cod_",colnames(mm)[3])
mm_17 <- mm6 Tabla final migración
union <- rbind(mm_11,mm_13,mm_15,mm_17)
union$cod_sexo <- union$Sexo
union$cod_sexo[union$cod_sexo == "Hombre"] <- "01"
union$cod_sexo[union$cod_sexo == "Mujer"] <- "02"
union$cod_alfa <- union$`Sabe leer?`
union$cod_alfa[union$cod_alfa == "Sí"] <- "01"
union$cod_alfa[union$cod_alfa == "No"] <- "02"
tab_f <- merge(x = union, y = cod_com, by = "comuna")
tab_f <- tab_f[,c(1,2,3,4,5,9,6,10,7,8)]
datatable(tab_f, extensions = 'Buttons', escape = FALSE, rownames = FALSE,
options = list(dom = 'Bfrtip',
buttons = list('colvis', list(extend = 'collection',
buttons = list(
list(extend='copy'),
list(extend='excel',
filename = 'tabla_ytotcor_e5a'),
list(extend='pdf',
filename= 'tabla_ytotcor_e5a')),
text = 'Download')), scrollX = TRUE))