Email             :
rpubs             : https://rpubs.com/Garr
Jurusan          : Statistika Bisnis
Address         : ARA Center, Matana University Tower
                         Jl. CBD Barat Kav, RT.1, Curug Sangereng, Kelapa Dua, Tangerang, Banten 15810.


1 Integral Tentu dan Tak Tentu

1.1 Integral tentu

masukan=c(1:5)

integral <- function(x)
    {
    x^2 + x-2
    }
    
integral(masukan)
## [1]  0  4 10 18 28
cat("fungsi:",integral(masukan))
## fungsi: 0 4 10 18 28

1.2 Integral tak tentu

library(mosaicCalc)
## Loading required package: mosaicCore
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## Attaching package: 'mosaicCalc'
## The following object is masked from 'package:stats':
## 
##     D
integral = antiD((x + 2)^2 ~x)
integral
## function (x, C = 0) 
## 1/3 * (x + 2)^3 + C

2 Luas Lingkaran, Keliling Lingkaran, dan, Volume Bola.

lingkaran <- function(phi,r)
{
  luas_permukaan = 4*phi*r^2
  keliling = 2*phi*r
  volume = phi*r^2
  return (cat(c("luas permukaan:",luas_permukaan, sep = "/n","keliling:",keliling, sep = "/n", "volume:",volume)))
}
lingkaran(22/7,14)
## luas permukaan: 2464 /n keliling: 88 /n volume: 616

3 Nilai Maksimum, Minimum, Rata-rata, Median, Mode, Variansi, Standard Deviasi pada data berfrekuensi.

nilai <- c(3,2,4,4,1,2.7,2.5,3.25,4,3.6)
frekuensi <- c(2,5,8,15,3,9,13,7,9,3)
data = data.frame(nilai,frekuensi)
data
##    nilai frekuensi
## 1   3.00         2
## 2   2.00         5
## 3   4.00         8
## 4   4.00        15
## 5   1.00         3
## 6   2.70         9
## 7   2.50        13
## 8   3.25         7
## 9   4.00         9
## 10  3.60         3
data = c(rep(3,2),rep(2,5),rep(4,8),rep(4,15),rep(1,3),rep(2.7,9),rep(2.5,13),rep(3.25,7),rep(4,9),rep(3.6,3))
max<-max(data)
min<-min(data)
mean<-mean(data)
median<-median(data)
mode<-mode(data)
variansi<-var(data)
standar_deviasi<-sd(data)

kesimpulan<-c(max,min,mean,median,mode,variansi,standar_deviasi)
names(kesimpulan)<-c(max,min,mean,median,mode,variansi,standar_deviasi)
kesimpulan
##                   4                   1    3.20743243243243                3.25 
##                 "4"                 "1"  "3.20743243243243"              "3.25" 
##             numeric   0.704019344687153    0.83905860622912 
##           "numeric" "0.704019344687153"  "0.83905860622912"
LS0tDQp0aXRsZTogIlR1Z2FzIDUiDQpzdWJ0aXRsZTogIkFsZ29yaXRtYSBkYW4gU3RydWt0dXIgRGF0YSINCmF1dGhvcjogIkdhcnJ5IEp1bGl1cyAoMjAyMDQ5MjAwMDMpIg0KZGF0ZTogImByIGZvcm1hdChTeXMuRGF0ZSgpLCAnJUIgJWQsICVZJylgIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDogDQogICAgaHRtbF9kb2N1bWVudDogbnVsbA0KICAgIGNvZGVfZm9sZGluZzogaGlkZQ0KICAgIHRvYzogeWVzDQogICAgdG9jX2Zsb2F0Og0KICAgICAgY29sbGFwc2VkOiB5ZXMNCiAgICBudW1iZXJfc2VjdGlvbnM6IHllcw0KICAgIGNvZGVfZG93bmxvYWQ6IHllcw0KICAgIHRoZW1lOiBzYW5kc3RvbmUNCiAgICBjc3M6IHN0eWxlMS5jc3MNCiAgICBoaWdobGlnaHQ6IG1vbm9jaHJvbWUNCi0tLQ0KDQoNCjxpbWcgc3R5bGU9ImZsb2F0OiByaWdodDsgbWFyZ2luOiAwcHggMTAwcHggMHB4IDBweDsgd2lkdGg6MjUlIiBzcmM9Im1lLnBuZyIvPiANCg0KYGBge3IgbG9nbywgZWNobz1GQUxTRSxmaWcuYWxpZ249J2NlbnRlcicsIG91dC53aWR0aCA9ICczMCUnfQ0Ka25pdHI6OmluY2x1ZGVfZ3JhcGhpY3MoImxvZ29tYXRhbmEucG5nIikNCmBgYA0KDQpFbWFpbCAmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsmbmJzcDs6ICBnYXJyeWp1bGl1c3Blcm1hbkBnbWFpbC5jb20gPGJyPg0KcnB1YnMgJm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7ICZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOyAmbmJzcDs6IGh0dHBzOi8vcnB1YnMuY29tL0dhcnIgPGJyPg0KSnVydXNhbiAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7OiBbU3RhdGlzdGlrYSBCaXNuaXNdKGh0dHBzOi8vbWF0YW5hdW5pdmVyc2l0eS5hYy5pZC8/bHk9YWNhZGVtaWMmYz1zYikgPGJyPg0KQWRkcmVzcyAgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7IDogQVJBIENlbnRlciwgTWF0YW5hIFVuaXZlcnNpdHkgVG93ZXIgPGJyPg0KJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsmbmJzcDsgSmwuIENCRCBCYXJhdCBLYXYsIFJULjEsIEN1cnVnIFNhbmdlcmVuZywgS2VsYXBhIER1YSwgVGFuZ2VyYW5nLCBCYW50ZW4gMTU4MTAuDQoNCioqKioNCg0KIyBJbnRlZ3JhbCBUZW50dSBkYW4gVGFrIFRlbnR1DQoNCiMjIEludGVncmFsIHRlbnR1DQoNCmBgYHtyfQ0KbWFzdWthbj1jKDE6NSkNCg0KaW50ZWdyYWwgPC0gZnVuY3Rpb24oeCkNCiAgICB7DQogICAgeF4yICsgeC0yDQogICAgfQ0KICAgIA0KaW50ZWdyYWwobWFzdWthbikNCmNhdCgiZnVuZ3NpOiIsaW50ZWdyYWwobWFzdWthbikpDQpgYGANCg0KIyMgSW50ZWdyYWwgdGFrIHRlbnR1DQoNCmBgYHtyfQ0KbGlicmFyeShtb3NhaWNDYWxjKQ0KDQppbnRlZ3JhbCA9IGFudGlEKCh4ICsgMileMiB+eCkNCmludGVncmFsDQpgYGANCg0KIyBMdWFzIExpbmdrYXJhbiwgS2VsaWxpbmcgTGluZ2thcmFuLCBkYW4sIFZvbHVtZSBCb2xhLg0KDQpgYGB7cn0NCmxpbmdrYXJhbiA8LSBmdW5jdGlvbihwaGkscikNCnsNCiAgbHVhc19wZXJtdWthYW4gPSA0KnBoaSpyXjINCiAga2VsaWxpbmcgPSAyKnBoaSpyDQogIHZvbHVtZSA9IHBoaSpyXjINCiAgcmV0dXJuIChjYXQoYygibHVhcyBwZXJtdWthYW46IixsdWFzX3Blcm11a2Fhbiwgc2VwID0gIi9uIiwia2VsaWxpbmc6IixrZWxpbGluZywgc2VwID0gIi9uIiwgInZvbHVtZToiLHZvbHVtZSkpKQ0KfQ0KbGluZ2thcmFuKDIyLzcsMTQpDQpgYGANCg0KIyBOaWxhaSBNYWtzaW11bSwgTWluaW11bSwgUmF0YS1yYXRhLCBNZWRpYW4sIE1vZGUsIFZhcmlhbnNpLCBTdGFuZGFyZCBEZXZpYXNpIHBhZGEgZGF0YSBiZXJmcmVrdWVuc2kuDQoNCmBgYHtyfQ0KbmlsYWkgPC0gYygzLDIsNCw0LDEsMi43LDIuNSwzLjI1LDQsMy42KQ0KZnJla3VlbnNpIDwtIGMoMiw1LDgsMTUsMyw5LDEzLDcsOSwzKQ0KZGF0YSA9IGRhdGEuZnJhbWUobmlsYWksZnJla3VlbnNpKQ0KZGF0YQ0KDQpkYXRhID0gYyhyZXAoMywyKSxyZXAoMiw1KSxyZXAoNCw4KSxyZXAoNCwxNSkscmVwKDEsMykscmVwKDIuNyw5KSxyZXAoMi41LDEzKSxyZXAoMy4yNSw3KSxyZXAoNCw5KSxyZXAoMy42LDMpKQ0KbWF4PC1tYXgoZGF0YSkNCm1pbjwtbWluKGRhdGEpDQptZWFuPC1tZWFuKGRhdGEpDQptZWRpYW48LW1lZGlhbihkYXRhKQ0KbW9kZTwtbW9kZShkYXRhKQ0KdmFyaWFuc2k8LXZhcihkYXRhKQ0Kc3RhbmRhcl9kZXZpYXNpPC1zZChkYXRhKQ0KDQprZXNpbXB1bGFuPC1jKG1heCxtaW4sbWVhbixtZWRpYW4sbW9kZSx2YXJpYW5zaSxzdGFuZGFyX2Rldmlhc2kpDQpuYW1lcyhrZXNpbXB1bGFuKTwtYyhtYXgsbWluLG1lYW4sbWVkaWFuLG1vZGUsdmFyaWFuc2ksc3RhbmRhcl9kZXZpYXNpKQ0Ka2VzaW1wdWxhbg0KYGBgDQo=