setwd("C:/Users/Hervi/Data")
pi_zzadelivery=read.csv("C:/Users/Hervi/Data/pizza_delivery.csv",header=TRUE,sep=",")
pi_zzadelivery
attach(pi_zzadelivery)
Histogram of the Temperature oF the Pizza
hist(pi_zzadelivery$temperature,
main = 'Histogram of Temperature',
xlab ='Temperature (°C)',
ylab ='Deliveries',
col='violet',
ylim = c(0,90),
xlim = c(45,80),
breaks=50)
lines(c(65,65),
c(0,300),col= "blue",
type='l'
,lty=2,lwd=3)
Deliveries By Branch
branch = (pi_zzadelivery$branch)
transform(table(branch))
transform(table(branch)/length (branch))
plot.ecdf(pi_zzadelivery$time,
main= "Pizza Delivery Time",
xlab ="Time",
col= "violet")
Histogram for Delivery Time
hist(pi_zzadelivery$time,
main="Pizza Delivery Time",
xlab="Time",
col="pink")
***using absolute and relative frequency***
ABSOLUTE FREQUENCY
hist(pi_zzadelivery$time,
main="Absolute Frequency",
xlab="Time",
col="red")
RELATIVE FREQUENCY
hist(pi_zzadelivery$time, freq = F,
breaks = 20,
main="Relative Frequency",
xlab="Time",
col="orange")
library(MASS)
truehist(pi_zzadelivery$time,
main="Pizza Delivery Time",
xlab = "Time",
ylab= "Relative Frequency",
col="green" )
***Create a contingency table for the two new variables***
pi_zzadelivery=read.csv("C:/Users/Hervi/Data/pizza_delivery.csv")
pi_zzadelivery$tempcat<- cut(pi_zzadelivery$temperature,
breaks= c(0,65,100))
pi_zzadelivery$timecat<- cut(pi_zzadelivery$time,
breaks= c(0,30,100))
attach(pi_zzadelivery)
## The following object is masked _by_ .GlobalEnv:
##
## branch
## The following objects are masked from pi_zzadelivery (pos = 4):
##
## bill, branch, date, discount_customer, driver, free_wine, got_wine,
## ï..day, operator, pizzas, temperature, time
addmargins(table(tempcat,timecat))
## timecat
## tempcat (0,30] (30,100] Sum
## (0,65] 101 691 792
## (65,100] 213 261 474
## Sum 314 952 1266
ODDSRATIO
oddsratio <- (101*261)/(213*691)
oddsratio
## [1] 0.1791036