

Email : albert.prayogo99@gmail.com
RPubs : https://rpubs.com/albert23899
Jurusan : Statistika
Address : ARA Center, Matana University Tower
Jl. CBD Barat Kav, RT.1, Curug Sangereng, Kelapa Dua, Tangerang, Banten 15810.
Menghitung Integral Tak Tentu dan Intergral Tak Tentu
integral<-function(x3,x2,x,c)
{
cat("Integral tak tentu fungsi pangkat 3 :",x3/4,"x^4",x2/3,"x^3",x/2,"x^2",c*1,"x")
}
integralt<-function(x3,x2,x,c,a,b)
{((x3/4)*(b^4))+((x2/3)*(b^3))+((x/2)*(b^2))+((c*1)*(b*1))-((x3/4)*(a^4))-((x2/3)*(a^3))-((x/2)*(a^2))-((c*1)*(a^1))
}
print(integral(1,2,3,4))
## Integral tak tentu fungsi pangkat 3 : 0.25 x^4 0.6666667 x^3 1.5 x^2 4 xNULL
print(integralt(1,2,3,4,1,2))
## [1] 16.91667
Fungsi untuk menghitung luas dan keliling lingkaran, volume bola
lkv<-function(r)
{luas=pi*(r^2)
keliling=2*pi*r
volume=(4/3)*pi*(r^3)
return(cat(c("Luas Lingkaran: ",luas,"\n",
"Keliling Lingkaran: ",keliling,"\n",
"Volume Bola:",volume)))
}
print(lkv(14))
## Luas Lingkaran: 615.752160103599
## Keliling Lingkaran: 87.9645943005142
## Volume Bola: 11494.0403219339NULL
Fungsi untuk menghitung nilai statistik
Tinggi<-seq(150,180,5)
Frek<-c(15,23,28,40,39,22,9)
data<-function(x,frek)
{
maksimum=max(x)
minimum=min(x)
modus=max(frek)
median=median(x)
ratarata=sum(x*frek)/frek
variansi=((x-ratarata)^2)*frek/frek
standardeviasi=sqrt(variansi)
cat("Nilai Maksimum :",maksimum,"\n",
"Nilai Minimum :", minimum,"\n",
"Modus:",modus,"\n",
"Median:",median,"\n",
"Rata-rata:",ratarata,"\n",
"variansi:",variansi,"\n",
"Standar Deviasi:",standardeviasi,"\n")
}
print(data(Tinggi,Frek))
## Nilai Maksimum : 180
## Nilai Minimum : 150
## Modus: 40
## Median: 165
## Rata-rata: 1933 1260.652 1035.536 724.875 743.4615 1317.955 3221.667
## variansi: 3179089 1222467 766562.8 313460 328858.1 1306345 9251736
## Standar Deviasi: 1783 1105.652 875.5357 559.875 573.4615 1142.955 3041.667
## NULL
LS0tDQp0aXRsZTogIlR1Z2FzIDQiDQpzdWJ0aXRsZTogIkFsZ29yaXRtYSBkYW4gU3R1cmt0dXIgRGF0YSINCmF1dGhvcjogIkFsYmVydCBBZ3VuZyBQcmF5b2dvICgyMDIwNDkyMDAxOSkiDQpkYXRlOiAiYHIgZm9ybWF0KFN5cy5EYXRlKCksICclQiAlZCwgJVknKWAiDQpvdXRwdXQ6IA0KICBodG1sX2RvY3VtZW50OiANCiAgICBodG1sX2RvY3VtZW50OiBudWxsDQogICAgY29kZV9mb2xkaW5nOiBoaWRlDQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZmxvYXQ6DQogICAgICBjb2xsYXBzZWQ6IHllcw0KICAgIG51bWJlcl9zZWN0aW9uczogeWVzDQogICAgY29kZV9kb3dubG9hZDogeWVzDQogICAgdGhlbWU6IHNhbmRzdG9uZQ0KICAgIGNzczogc3R5bGUxLmNzcw0KICAgIGhpZ2hsaWdodDogbW9ub2Nocm9tZQ0KLS0tDQoNCg0KPGltZyBzdHlsZT0iZmxvYXQ6IHJpZ2h0OyBtYXJnaW46IDBweCAxMDBweCAwcHggMHB4OyB3aWR0aDoyNSUiIHNyYz0ibWUuanBnIi8+IA0KDQpgYGB7ciBsb2dvLCBlY2hvPUZBTFNFLGZpZy5hbGlnbj0nY2VudGVyJywgb3V0LndpZHRoID0gJzMwJSd9DQprbml0cjo6aW5jbHVkZV9ncmFwaGljcygibG9nb21hdGFuYS5wbmciKQ0KYGBgDQoNCkVtYWlsICZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyZuYnNwOzogIGFsYmVydC5wcmF5b2dvOTlAZ21haWwuY29tIDxicj4NClJQdWJzICAmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDs6IGh0dHBzOi8vcnB1YnMuY29tL2FsYmVydDIzODk5IDxicj4NCkp1cnVzYW4gJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOzogW1N0YXRpc3Rpa2FdKGh0dHBzOi8vbWF0YW5hdW5pdmVyc2l0eS5hYy5pZC8/bHk9YWNhZGVtaWMmYz1zYikgPGJyPg0KQWRkcmVzcyAgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7IDogQVJBIENlbnRlciwgTWF0YW5hIFVuaXZlcnNpdHkgVG93ZXIgPGJyPg0KJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsmbmJzcDsgSmwuIENCRCBCYXJhdCBLYXYsIFJULjEsIEN1cnVnIFNhbmdlcmVuZywgS2VsYXBhIER1YSwgVGFuZ2VyYW5nLCBCYW50ZW4gMTU4MTAuDQoNCioqKioNCiMgTWVuZ2hpdHVuZyBJbnRlZ3JhbCBUYWsgVGVudHUgZGFuIEludGVyZ3JhbCBUYWsgVGVudHUNCmBgYHtyfQ0KaW50ZWdyYWw8LWZ1bmN0aW9uKHgzLHgyLHgsYykNCnsNCiAgY2F0KCJJbnRlZ3JhbCB0YWsgdGVudHUgZnVuZ3NpIHBhbmdrYXQgMyA6Iix4My80LCJ4XjQiLHgyLzMsInheMyIseC8yLCJ4XjIiLGMqMSwieCIpDQogIH0NCmludGVncmFsdDwtZnVuY3Rpb24oeDMseDIseCxjLGEsYikNCnsoKHgzLzQpKihiXjQpKSsoKHgyLzMpKihiXjMpKSsoKHgvMikqKGJeMikpKygoYyoxKSooYioxKSktKCh4My80KSooYV40KSktKCh4Mi8zKSooYV4zKSktKCh4LzIpKihhXjIpKS0oKGMqMSkqKGFeMSkpDQp9DQpwcmludChpbnRlZ3JhbCgxLDIsMyw0KSkNCnByaW50KGludGVncmFsdCgxLDIsMyw0LDEsMikpDQpgYGANCg0KIyBGdW5nc2kgdW50dWsgbWVuZ2hpdHVuZyBsdWFzIGRhbiBrZWxpbGluZyBsaW5na2FyYW4sIHZvbHVtZSBib2xhDQpgYGB7cn0NCmxrdjwtZnVuY3Rpb24ocikNCntsdWFzPXBpKihyXjIpDQprZWxpbGluZz0yKnBpKnINCnZvbHVtZT0oNC8zKSpwaSoocl4zKQ0KcmV0dXJuKGNhdChjKCJMdWFzIExpbmdrYXJhbjogIixsdWFzLCJcbiIsDQogICAgICAgICAgICAgIktlbGlsaW5nIExpbmdrYXJhbjogIixrZWxpbGluZywiXG4iLA0KICAgICAgICAgICAgICJWb2x1bWUgQm9sYToiLHZvbHVtZSkpKQ0KfQ0KcHJpbnQobGt2KDE0KSkNCmBgYA0KIyBGdW5nc2kgdW50dWsgbWVuZ2hpdHVuZyBuaWxhaSBzdGF0aXN0aWsNCmBgYHtyfQ0KVGluZ2dpPC1zZXEoMTUwLDE4MCw1KQ0KRnJlazwtYygxNSwyMywyOCw0MCwzOSwyMiw5KQ0KZGF0YTwtZnVuY3Rpb24oeCxmcmVrKQ0Kew0KICBtYWtzaW11bT1tYXgoeCkNCiAgbWluaW11bT1taW4oeCkNCiAgbW9kdXM9bWF4KGZyZWspDQogIG1lZGlhbj1tZWRpYW4oeCkNCiAgcmF0YXJhdGE9c3VtKHgqZnJlaykvZnJlaw0KICB2YXJpYW5zaT0oKHgtcmF0YXJhdGEpXjIpKmZyZWsvZnJlaw0KICBzdGFuZGFyZGV2aWFzaT1zcXJ0KHZhcmlhbnNpKQ0KICBjYXQoIk5pbGFpIE1ha3NpbXVtIDoiLG1ha3NpbXVtLCJcbiIsDQogICAgICAiTmlsYWkgTWluaW11bSAgOiIsIG1pbmltdW0sIlxuIiwNCiAgICAgICJNb2R1czoiLG1vZHVzLCJcbiIsDQogICAgICAiTWVkaWFuOiIsbWVkaWFuLCJcbiIsDQogICAgICAiUmF0YS1yYXRhOiIscmF0YXJhdGEsIlxuIiwNCiAgICAgICJ2YXJpYW5zaToiLHZhcmlhbnNpLCJcbiIsDQogICAgICAiU3RhbmRhciBEZXZpYXNpOiIsc3RhbmRhcmRldmlhc2ksIlxuIikNCn0NCnByaW50KGRhdGEoVGluZ2dpLEZyZWspKQ0KYGBgDQoNCg==