Carregando dados
dados_raw = read_csv(
here::here("data/participation-per-country.csv"),
col_types = cols(
.default = col_double(),
site = col_character(),
country = col_character(),
geo = col_character(),
four_regions = col_character(),
eight_regions = col_character(),
six_regions = col_character(),
`World bank income group 2017` = col_character()
)
) %>% janitor::clean_names()
dados = dados_raw %>%
filter(site %in% c("StackOverflow"), !is.na(epi + responderam_prop + internet + gni + idv))
glimpse(dados)
## Rows: 49
## Columns: 21
## $ site <chr> "StackOverflow", "StackOverflow", "StackO…
## $ country <chr> "Austria", "Belgium", "Brazil", "Chile", …
## $ pdi <dbl> 11, 65, 69, 63, 80, 67, 35, 57, 18, 78, 7…
## $ idv <dbl> 55, 75, 38, 23, 20, 13, 15, 58, 74, 8, 25…
## $ mas <dbl> 79, 54, 49, 28, 66, 64, 21, 57, 16, 63, 4…
## $ uai <dbl> 70, 94, 76, 86, 30, 80, 86, 74, 23, 67, 8…
## $ usuarios <dbl> 2518, 4275, 10717, 1075, 13401, 1224, 431…
## $ responderam_prop <dbl> 0.6310564, 0.6081871, 0.4826911, 0.483720…
## $ perguntaram_prop <dbl> 0.5933280, 0.6088889, 0.4658020, 0.484651…
## $ editaram_prop <dbl> 0.14932486, 0.14666667, 0.08351218, 0.076…
## $ comentaram_prop <dbl> 0.3502780, 0.3202339, 0.2038817, 0.210232…
## $ gni <dbl> 48160, 44990, 11630, 14280, 5680, 6990, 8…
## $ internet <dbl> 79.8, 78.0, 45.0, 52.3, 38.3, 40.4, 42.1,…
## $ epi <dbl> 63.21, 61.21, 49.96, 48.75, 50.15, 48.54,…
## $ geo <chr> "aut", "bel", "bra", "chl", "chn", "col",…
## $ four_regions <chr> "europe", "europe", "americas", "americas…
## $ eight_regions <chr> "europe_west", "europe_west", "america_so…
## $ six_regions <chr> "europe_central_asia", "europe_central_as…
## $ latitude <dbl> 47.33333, 50.75000, -10.00000, -33.45694,…
## $ longitude <dbl> 13.33333, 4.50000, -55.00000, -70.64827, …
## $ world_bank_income_group_2017 <chr> "High income", "High income", "Upper midd…
summary(dados)
## site country pdi idv
## Length:49 Length:49 Min. : 11 Min. : 6.00
## Class :character Class :character 1st Qu.: 50 1st Qu.:20.00
## Mode :character Mode :character Median : 66 Median :30.00
## Mean : 64 Mean :40.04
## 3rd Qu.: 78 3rd Qu.:60.00
## Max. :104 Max. :80.00
##
## mas uai usuarios responderam_prop
## Min. : 5.00 Min. : 8.00 Min. : 116 Min. :0.2917
## 1st Qu.: 37.00 1st Qu.: 58.00 1st Qu.: 673 1st Qu.:0.4496
## Median : 45.00 Median : 80.00 Median : 2270 Median :0.5163
## Mean : 47.94 Mean : 70.06 Mean : 4839 Mean :0.5041
## 3rd Qu.: 63.00 3rd Qu.: 86.00 3rd Qu.: 4275 3rd Qu.:0.5746
## Max. :110.00 Max. :104.00 Max. :70970 Max. :0.6351
##
## perguntaram_prop editaram_prop comentaram_prop gni
## Min. :0.3631 Min. :0.01724 Min. :0.0625 Min. : 1400
## 1st Qu.:0.4847 1st Qu.:0.06391 1st Qu.:0.1721 1st Qu.: 6990
## Median :0.5185 Median :0.09363 Median :0.2346 Median :14200
## Mean :0.5224 Mean :0.09281 Mean :0.2355 Mean :23509
## 3rd Qu.:0.5814 3rd Qu.:0.11773 3rd Qu.:0.3113 3rd Qu.:41750
## Max. :0.6286 Max. :0.16864 Max. :0.3599 Max. :98860
##
## internet epi geo four_regions
## Min. : 5.0 Min. :38.02 Length:49 Length:49
## 1st Qu.:42.1 1st Qu.:48.75 Class :character Class :character
## Median :61.0 Median :52.80 Mode :character Mode :character
## Mean :58.2 Mean :53.90
## 3rd Qu.:78.0 3rd Qu.:59.58
## Max. :95.0 Max. :69.30
##
## eight_regions six_regions latitude longitude
## Length:49 Length:49 Min. :-33.46 Min. :-99.128
## Class :character Class :character 1st Qu.: 14.24 1st Qu.: -7.065
## Mode :character Mode :character Median : 35.69 Median : 15.000
## Mean : 29.92 Mean : 14.766
## 3rd Qu.: 48.54 3rd Qu.: 44.500
## Max. : 64.00 Max. :139.753
## NA's :2 NA's :2
## world_bank_income_group_2017
## Length:49
## Class :character
## Mode :character
##
##
##
##