Licença

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

License: CC BY-SA 4.0

Citação

Sugestão de citação: FIGUEIREDO, Adriano Marcos Rodrigues. Exercício rápido de deflação usando o deflateBR. Campo Grande-MS,Brasil: RStudio/Rpubs, 2021. Disponível em http://rpubs.com/amrofi/deflacao_deflatebr.

1 Introdução

Quero deflacionar a série 4352 - Receita dos estados e municípios (Fluxos) - Arrecadação de ICMS - Mato Grosso do Sul do BCB. Vou usar o IGP-DI, série encadeada (ago1994=100) da FGV.

2 Dados do IPEADATA pelo ipeadatar e tidyipea

2.1 ICMS e IGPDI

# serie 4352 - Receita dos estados e municípios (Fluxos) - Arrecadação de ICMS
# - Mato Grosso do Sul SGST - BCB
library(BETS)
require(ipeadatar)
# devtools::install_github('schoulten/tidyipea') # para ver codigo do ipeadata
library(tidyipea)  # pacote semelhante ao ipeadatar e ecoseries
all_codes <- tidyipea::codes_ipea()
# olhando all_codes, o índice geral de preços IGP-DI mensal é de codigo
# IGP12_IGPDI12 serie encadeada ago1994=100
dplyr::glimpse(all_codes)
Rows: 8,879
Columns: 7
$ code       <chr> "ABATE_ABPEAV", "ABATE_ABPEBV", "ABATE_ABPESU", "ABATE_ABQU~
$ name       <chr> "Abate - aves - peso das carcaças", "Abate - bovinos - peso~
$ theme      <fct> Macroeconomic, Macroeconomic, Macroeconomic, Macroeconomic,~
$ source     <fct> IBGE/Coagro, IBGE/Coagro, IBGE/Coagro, IBGE/Coagro, IBGE/Co~
$ freq       <fct> Yearly, Yearly, Yearly, Yearly, Yearly, Yearly, Monthly, Mo~
$ lastupdate <date> 2021-09-10, 2021-09-11, 2021-09-10, 2021-09-10, 2021-09-10~
$ status     <fct> Active, Active, Active, Active, Active, Active, Inactive, A~
igpdi <- ipeadata("IGP12_IGPDI12")  # pelo ipeadatar
# vou deixar apenas colunas 2 e 3 de igpdi
igpdi <- igpdi[, c(2:3)]
head(igpdi)
# pelo tidyipea -----
library(tidyipea)
library(dplyr)

# Get data
my_tbl <- tidyipea::get_ipea(code = c("IGP12_IGPDI12"))
head(my_tbl)
#
dados <- BETSget(4352)  # ICMS
dados.ts <- ts(dados$value, start = c(1992, 1), frequency = 12)
dados.ts <- window(dados.ts, start = c(1994, 7))

3 Deflacao

# Deflacao pelo deflateBR
times <- igpdi$date  # criando o vetor do tempo, para elaborar a deflacao
times <- times[-c(1:606)]  # retirando valores anteriores a 1994-07-01
times <- times[-c(302:326)]  # retirando valores posteriores a 2019-07-01
icmsreal <- deflateBR::deflate(dados.ts, times, "06/2019", index = "igpdi")
# fazendo com 06/2019 fica identico ao ultimo da serie
writexl::write_xlsx(as.data.frame(zoo::cbind.zoo(dados.ts, icmsreal)), path = "dados_ts2.xlsx")

4 Resultados

require(fpp2)
autoplot(dados.ts) + autolayer(icmsreal) + xlab("Ano") + ylab("Valores (R$)") + ggtitle("ICMS - MS (nominal e real de Jul/2019)") +
    labs(caption = "Fonte: Dados básicos do BCB e deflacionado pelo IGP-DI/FGV para Jul/2019.")

Referências

Ferreira, Pedro Costa; Speranza, Talitha; Costa, Jonatha (2018). BETS: Brazilian Economic Time Series. R package version 0.4.9. https://CRAN.R-project.org/package=BETS

Gomes, Luiz Eduardo S. (2021). ipeadatar: API Wrapper for ‘Ipeadata’. R package version 0.1.4. https://CRAN.R-project.org/package=ipeadatar

Silva, Fernando da (2021). tidyipea: Get data from IPEADATA. R package version 0.0.0.9000. https://github.com/schoulten/tidyipea

LS0tDQp0aXRsZTogIkV4ZXJjw61jaW8gcsOhcGlkbyBkZSBkZWZsYcOnw6NvIHVzYW5kbyBvIGRlZmxhdGVCUiINCmF1dGhvcjogIkFkcmlhbm8gTWFyY29zIFJvZHJpZ3VlcyBGaWd1ZWlyZWRvLCAqZS1tYWlsOiBhZHJpYW5vLmZpZ3VlaXJlZG9AdWZtcy5icioiDQpsaW5rY29sb3I6IGJsdWUNCmFic3RyYWN0OiANCiAgVGhpcyBpcyBhbiBleGVyY2lzZSBmb3IgY2xhc3MgdXNlLiANCmRhdGU6ICJgciBmb3JtYXQoU3lzLkRhdGUoKSwgJyVkICVCICVZJylgIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIGNvZGVfZG93bmxvYWQ6IHRydWUNCiAgICB0aGVtZTogZGVmYXVsdA0KICAgIG51bWJlcl9zZWN0aW9uczogdHJ1ZQ0KICAgIHRvYzogeWVzDQogICAgdG9jX2Zsb2F0OiB5ZXMNCiAgICBkZl9wcmludDogcGFnZWQNCiAgICBmaWdfY2FwdGlvbjogdHJ1ZQ0KICBwZGZfZG9jdW1lbnQ6DQogICAgdG9jOiB5ZXMNCi0tLQ0KDQpgYGB7ciBrbml0cl9pbml0LCBlY2hvPUZBTFNFLCBjYWNoZT1GQUxTRX0NCmxpYnJhcnkoa25pdHIpDQpsaWJyYXJ5KHJtYXJrZG93bikNCmxpYnJhcnkocm1kZm9ybWF0cykNCg0KIyMgR2xvYmFsIG9wdGlvbnMNCm9wdGlvbnMobWF4LnByaW50PSIxMDAiKQ0Kb3B0c19jaHVuayRzZXQoZWNobz1UUlVFLA0KCSAgICAgICAgICAgICBjYWNoZT1UUlVFLA0KICAgICAgICAgICAgICAgcHJvbXB0PUZBTFNFLA0KICAgICAgICAgICAgICAgdGlkeT1UUlVFLA0KICAgICAgICAgICAgICAgY29tbWVudD1OQSwNCiAgICAgICAgICAgICAgIG1lc3NhZ2U9RkFMU0UsDQogICAgICAgICAgICAgICB3YXJuaW5nPUZBTFNFKQ0Kb3B0c19rbml0JHNldCh3aWR0aD0xMDApDQpgYGANCg0KDQpMaWNlbsOnYSB7LSNMaWNlbsOnYX0NCj09PT09PT09PT09PT09PT09PT0NCg0KVGhpcyB3b3JrIGlzIGxpY2Vuc2VkIHVuZGVyIHRoZSBDcmVhdGl2ZSBDb21tb25zIEF0dHJpYnV0aW9uLVNoYXJlQWxpa2UgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZS4gVG8gdmlldyBhIGNvcHkgb2YgdGhpcyBsaWNlbnNlLCB2aXNpdCA8aHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktc2EvNC4wLz4gb3Igc2VuZCBhIGxldHRlciB0byBDcmVhdGl2ZSBDb21tb25zLCBQTyBCb3ggMTg2NiwgTW91bnRhaW4gVmlldywgQ0EgOTQwNDIsIFVTQS4NCg0KIVtMaWNlbnNlOiBDQyBCWS1TQSA0LjBdKGh0dHBzOi8vbWlycm9ycy5jcmVhdGl2ZWNvbW1vbnMub3JnL3ByZXNza2l0L2J1dHRvbnMvODh4MzEvcG5nL2J5LXNhLnBuZyl7IHdpZHRoPTI1JSB9DQoNCkNpdGHDp8OjbyB7LSNDaXRhw6fDo299DQo9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PQ0KDQpTdWdlc3TDo28gZGUgY2l0YcOnw6NvOg0KRklHVUVJUkVETywgQWRyaWFubyBNYXJjb3MgUm9kcmlndWVzLiBFeGVyY8OtY2lvIHLDoXBpZG8gZGUgZGVmbGHDp8OjbyB1c2FuZG8gbyBkZWZsYXRlQlIuIENhbXBvIEdyYW5kZS1NUyxCcmFzaWw6IFJTdHVkaW8vUnB1YnMsIDIwMjEuIERpc3BvbsOtdmVsIGVtIDxodHRwOi8vcnB1YnMuY29tL2Ftcm9maS9kZWZsYWNhb19kZWZsYXRlYnI+LiANCg0KIyBJbnRyb2R1w6fDo28NCg0KUXVlcm8gZGVmbGFjaW9uYXIgYSBzw6lyaWUgNDM1MiAtIFJlY2VpdGEgZG9zIGVzdGFkb3MgZSBtdW5pY8OtcGlvcyAoRmx1eG9zKSAtIEFycmVjYWRhw6fDo28gZGUgSUNNUyAtIE1hdG8gR3Jvc3NvIGRvIFN1bCBkbyBCQ0IuIFZvdSB1c2FyIG8gSUdQLURJLCBzw6lyaWUgZW5jYWRlYWRhIChhZ28xOTk0PTEwMCkgZGEgRkdWLg0KDQojIERhZG9zIGRvIElQRUFEQVRBIHBlbG8gYGlwZWFkYXRhcmAgZSBgdGlkeWlwZWFgDQoNCiMjIElDTVMgZSBJR1BESQ0KDQpgYGB7cn0NCiMgc2VyaWUgNDM1MiAtIFJlY2VpdGEgZG9zIGVzdGFkb3MgZSBtdW5pY8OtcGlvcyAoRmx1eG9zKSAtIA0KIyBBcnJlY2FkYcOnw6NvIGRlIElDTVMgLSBNYXRvIEdyb3NzbyBkbyBTdWwNCiMgU0dTVCAtIEJDQg0KbGlicmFyeShCRVRTKQ0KcmVxdWlyZShpcGVhZGF0YXIpDQojIGRldnRvb2xzOjppbnN0YWxsX2dpdGh1Yigic2Nob3VsdGVuL3RpZHlpcGVhIikgIyBwYXJhIHZlciBjb2RpZ28gZG8gaXBlYWRhdGENCmxpYnJhcnkodGlkeWlwZWEpICMgcGFjb3RlIHNlbWVsaGFudGUgYW8gaXBlYWRhdGFyIGUgZWNvc2VyaWVzDQphbGxfY29kZXMgPC0gdGlkeWlwZWE6OmNvZGVzX2lwZWEoKQ0KIyBvbGhhbmRvIGFsbF9jb2RlcywgbyDDrW5kaWNlIGdlcmFsIGRlIHByZcOnb3MgSUdQLURJIG1lbnNhbCDDqSBkZSBjb2RpZ28gSUdQMTJfSUdQREkxMg0KIyBzZXJpZSBlbmNhZGVhZGEgYWdvMTk5ND0xMDANCmRwbHlyOjpnbGltcHNlKGFsbF9jb2RlcykNCmlncGRpPC1pcGVhZGF0YSgnSUdQMTJfSUdQREkxMicpICMgcGVsbyBpcGVhZGF0YXINCiMgdm91IGRlaXhhciBhcGVuYXMgY29sdW5hcyAyIGUgMyBkZSBpZ3BkaQ0KaWdwZGk8LWlncGRpWyxjKDI6MyldDQpoZWFkKGlncGRpKQ0KDQojIHBlbG8gdGlkeWlwZWEgLS0tLS0NCmxpYnJhcnkodGlkeWlwZWEpDQpsaWJyYXJ5KGRwbHlyKQ0KDQojIEdldCBkYXRhDQpteV90YmwgPC0gdGlkeWlwZWE6OmdldF9pcGVhKGNvZGUgPSBjKCJJR1AxMl9JR1BESTEyIikpDQpoZWFkKG15X3RibCkNCiMNCmRhZG9zPC1CRVRTZ2V0KDQzNTIpICAjIElDTVMNCmRhZG9zLnRzPC10cyhkYWRvcyR2YWx1ZSxzdGFydCA9IGMoMTk5MiwxKSxmcmVxdWVuY3kgPSAxMikNCmRhZG9zLnRzPC13aW5kb3coZGFkb3MudHMsc3RhcnQ9YygxOTk0LDcpKQ0KYGBgDQoNCiMgRGVmbGFjYW8NCg0KYGBge3J9DQojIERlZmxhY2FvIHBlbG8gZGVmbGF0ZUJSDQp0aW1lcyA8LSBpZ3BkaSRkYXRlICMgY3JpYW5kbyBvIHZldG9yIGRvIHRlbXBvLCBwYXJhIGVsYWJvcmFyIGEgZGVmbGFjYW8NCnRpbWVzPC10aW1lc1stYygxOjYwNildIyByZXRpcmFuZG8gdmFsb3JlcyBhbnRlcmlvcmVzIGEgMTk5NC0wNy0wMQ0KdGltZXM8LXRpbWVzWy1jKDMwMjozMjYpXSMgcmV0aXJhbmRvIHZhbG9yZXMgcG9zdGVyaW9yZXMgYSAyMDE5LTA3LTAxDQppY21zcmVhbDwtZGVmbGF0ZUJSOjpkZWZsYXRlKGRhZG9zLnRzLHRpbWVzLCIwNi8yMDE5IiwgaW5kZXggPSAiaWdwZGkiKQ0KIyBmYXplbmRvIGNvbSAgMDYvMjAxOSBmaWNhIGlkZW50aWNvIGFvIHVsdGltbyBkYSBzZXJpZQ0Kd3JpdGV4bDo6d3JpdGVfeGxzeChhcy5kYXRhLmZyYW1lKHpvbzo6Y2JpbmQuem9vKGRhZG9zLnRzLGljbXNyZWFsKSkscGF0aCA9ICJkYWRvc190czIueGxzeCIpDQoNCmBgYA0KIyBSZXN1bHRhZG9zDQoNCmBgYHtyfQ0KcmVxdWlyZShmcHAyKQ0KYXV0b3Bsb3QoZGFkb3MudHMpK2F1dG9sYXllcihpY21zcmVhbCkrIHhsYWIoIkFubyIpICsgDQogIHlsYWIoIlZhbG9yZXMgKFIkKSIpICsgZ2d0aXRsZSgiSUNNUyAtIE1TIChub21pbmFsIGUgcmVhbCBkZSBKdWwvMjAxOSkiKSsgDQogIGxhYnMoY2FwdGlvbiA9ICJGb250ZTogRGFkb3MgYsOhc2ljb3MgZG8gQkNCIGUgZGVmbGFjaW9uYWRvIHBlbG8gSUdQLURJL0ZHViBwYXJhIEp1bC8yMDE5LiIpDQpgYGANCg0KDQojIFJlZmVyw6puY2lhcyB7LSNSZWZlcsOqbmNpYXN9DQoNCkZlcnJlaXJhLCAgUGVkcm8gQ29zdGE7IFNwZXJhbnphLCBUYWxpdGhhOyAgQ29zdGEsIEpvbmF0aGEgKDIwMTgpLiBCRVRTOiBCcmF6aWxpYW4gRWNvbm9taWMgVGltZSBTZXJpZXMuIFIgcGFja2FnZSB2ZXJzaW9uIDAuNC45LiBodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPUJFVFMNCiAgICANCkdvbWVzLCAgTHVpeiBFZHVhcmRvIFMuICAoMjAyMSkuIGlwZWFkYXRhcjogQVBJIFdyYXBwZXIgZm9yICdJcGVhZGF0YScuIFIgcGFja2FnZSB2ZXJzaW9uIDAuMS40LiBodHRwczovL0NSQU4uUi1wcm9qZWN0Lm9yZy9wYWNrYWdlPWlwZWFkYXRhciAgICANCg0KU2lsdmEsIEZlcm5hbmRvIGRhICgyMDIxKS4gdGlkeWlwZWE6IEdldCBkYXRhIGZyb20gSVBFQURBVEEuIFIgcGFja2FnZSB2ZXJzaW9uIDAuMC4wLjkwMDAuIGh0dHBzOi8vZ2l0aHViLmNvbS9zY2hvdWx0ZW4vdGlkeWlwZWEgICAgDQogICANCiAgDQo=