R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

library(Lahman)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(magrittr)


#Q1
head(Pitching)
##    playerID yearID stint teamID lgID  W  L  G GS CG SHO SV IPouts   H  ER HR BB
## 1 bechtge01   1871     1    PH1   NA  1  2  3  3  2   0  0     78  43  23  0 11
## 2 brainas01   1871     1    WS3   NA 12 15 30 30 30   0  0    792 361 132  4 37
## 3 fergubo01   1871     1    NY2   NA  0  0  1  0  0   0  0      3   8   3  0  0
## 4 fishech01   1871     1    RC1   NA  4 16 24 24 22   1  0    639 295 103  3 31
## 5 fleetfr01   1871     1    NY2   NA  0  1  1  1  1   0  0     27  20  10  0  3
## 6 flowedi01   1871     1    TRO   NA  0  0  1  0  0   0  0      3   1   0  0  0
##   SO BAOpp   ERA IBB WP HBP BK  BFP GF   R SH SF GIDP
## 1  1    NA  7.96  NA  7  NA  0  146  0  42 NA NA   NA
## 2 13    NA  4.50  NA  7  NA  0 1291  0 292 NA NA   NA
## 3  0    NA 27.00  NA  2  NA  0   14  0   9 NA NA   NA
## 4 15    NA  4.35  NA 20  NA  0 1080  1 257 NA NA   NA
## 5  0    NA 10.00  NA  0  NA  0   57  0  21 NA NA   NA
## 6  0    NA  0.00  NA  0  NA  0    3  1   0 NA NA   NA
#Q2
Q2a <- filter(Pitching, SHO >= 12)
Q2a
##    playerID yearID stint teamID lgID  W  L  G GS CG SHO SV IPouts   H  ER HR
## 1 bradlge01   1876     1    SL3   NL 45 19 64 64 63  16  0   1719 470  78  3
## 2 galvipu01   1884     1    BFN   NL 46 22 72 72 71  12  0   1909 566 141 23
## 3 morried01   1886     1    PT1   AA 41 20 64 63 63  12  1   1666 455 151  5
## 4 coombja01   1910     1    PHA   AL 31  9 45 38 35  13  1   1059 248  51  0
## 5 alexape01   1915     1    PHI   NL 31 10 49 42 36  12  3   1129 253  51  3
## 6 alexape01   1916     1    PHI   NL 33 12 48 45 38  16  3   1167 323  67  6
## 7 gibsobo01   1968     1    SLN   NL 22  9 34 34 28  13  0    914 198  38 11
##    BB  SO BAOpp  ERA IBB WP HBP BK  BFP GF   R SH SF GIDP
## 1  38 103    NA 1.23  NA 34  NA  0 2269  0 229 NA NA   NA
## 2  63 369    NA 1.99  NA 16  NA  0 2554  0 254 NA NA   NA
## 3 118 326    NA 2.45  NA 22   7  0 2252  1 244 NA NA   NA
## 4 115 224    NA 1.30  NA 10   7  0 1353  6  74 NA NA   NA
## 5  64 241  0.19 1.22  NA  2  10  0 1435  7  86 NA NA   NA
## 6  50 167  0.23 1.55  NA  3  10  0 1500  3  90 NA NA   NA
## 7  62 268  0.18 1.12   6  4   7  0 1161  0  49 NA NA   NA
Q2b <- filter(Pitching, SHO>=12 & ERA<=2)
Q2b
##    playerID yearID stint teamID lgID  W  L  G GS CG SHO SV IPouts   H  ER HR
## 1 bradlge01   1876     1    SL3   NL 45 19 64 64 63  16  0   1719 470  78  3
## 2 galvipu01   1884     1    BFN   NL 46 22 72 72 71  12  0   1909 566 141 23
## 3 coombja01   1910     1    PHA   AL 31  9 45 38 35  13  1   1059 248  51  0
## 4 alexape01   1915     1    PHI   NL 31 10 49 42 36  12  3   1129 253  51  3
## 5 alexape01   1916     1    PHI   NL 33 12 48 45 38  16  3   1167 323  67  6
## 6 gibsobo01   1968     1    SLN   NL 22  9 34 34 28  13  0    914 198  38 11
##    BB  SO BAOpp  ERA IBB WP HBP BK  BFP GF   R SH SF GIDP
## 1  38 103    NA 1.23  NA 34  NA  0 2269  0 229 NA NA   NA
## 2  63 369    NA 1.99  NA 16  NA  0 2554  0 254 NA NA   NA
## 3 115 224    NA 1.30  NA 10   7  0 1353  6  74 NA NA   NA
## 4  64 241  0.19 1.22  NA  2  10  0 1435  7  86 NA NA   NA
## 5  50 167  0.23 1.55  NA  3  10  0 1500  3  90 NA NA   NA
## 6  62 268  0.18 1.12   6  4   7  0 1161  0  49 NA NA   NA
#Q3
Q3a <- slice(Pitching, 40:50)
Q3a
##     playerID yearID stint teamID lgID  W  L  G GS CG SHO SV IPouts   H  ER HR
## 1  woltery01   1872     1    CL1   NA  3  6 12  8  5   0  0    226 115  51  3
## 2  wrighha01   1872     1    BS1   NA  1  0  7  0  0   0  4     77  26   6  0
## 3  zettlge01   1872     1    TRO   NA 14  8 25 22 17   2  1    563 207  45  2
## 4  zettlge01   1872     2    BR1   NA  1  8  9  9  8   0  0    226 106  30  1
## 5  bechtge01   1873     1    PH2   NA  0  2  3  2  1   0  0     48  27   8  0
## 6  brainas01   1873     1    BL1   NA  5  7 14 14 12   0  0    326 182  50  0
## 7  brittji01   1873     1    BR2   NA 17 36 54 54 51   1  0   1442 696 218  6
## 8  campbhu01   1873     1    ELI   NA  2 16 19 18 18   0  0    495 251  54  6
## 9  cummica01   1873     1    BL1   NA 28 14 42 42 42   1  0   1146 475 119  4
## 10 fergubo01   1873     1    BR2   NA  0  1  4  1  1   0  0     58  41  12  2
## 11 fishech01   1873     1    PH1   NA  3  4 13  5  5   0  2    253  90  17  1
##    BB SO BAOpp  ERA IBB WP HBP BK  BFP GF   R SH SF GIDP
## 1   7  4    NA 6.09  NA  6  NA  0  385  5 106 NA NA   NA
## 2   0  1    NA 2.10  NA  0  NA  0  109  6  12 NA NA   NA
## 3   8 17    NA 2.16  NA  3  NA  0  836  4 132 NA NA   NA
## 4   6  8    NA 3.58  NA  6  NA  0  360  0  62 NA NA   NA
## 5   2  0    NA 4.50  NA  0  NA  0   87  1  24 NA NA   NA
## 6   9  3    NA 4.14  NA  3  NA  0  568  0 139 NA NA   NA
## 7  41 16    NA 4.08  NA 19  NA  0 2353  0 519 NA NA   NA
## 8   8  7    NA 2.95  NA  3  NA  0  852  1 213 NA NA   NA
## 9  33 34    NA 2.80  NA 10  NA  0 1768  0 292 NA NA   NA
## 10  2  0    NA 5.59  NA  0  NA  0  109  3  30 NA NA   NA
## 11 10 14    NA 1.81  NA  6  NA  0  400  8  73 NA NA   NA
Q3b <- Q3a %>% select(playerID, SHO, ERA)
Q3b
##     playerID SHO  ERA
## 1  woltery01   0 6.09
## 2  wrighha01   0 2.10
## 3  zettlge01   2 2.16
## 4  zettlge01   0 3.58
## 5  bechtge01   0 4.50
## 6  brainas01   0 4.14
## 7  brittji01   1 4.08
## 8  campbhu01   0 2.95
## 9  cummica01   1 2.80
## 10 fergubo01   0 5.59
## 11 fishech01   0 1.81
Q3c <- Q3a %>% mutate(SOBB = SO/BB) %>% select(playerID, SHO, ERA, SOBB)
Q3c
##     playerID SHO  ERA      SOBB
## 1  woltery01   0 6.09 0.5714286
## 2  wrighha01   0 2.10       Inf
## 3  zettlge01   2 2.16 2.1250000
## 4  zettlge01   0 3.58 1.3333333
## 5  bechtge01   0 4.50 0.0000000
## 6  brainas01   0 4.14 0.3333333
## 7  brittji01   1 4.08 0.3902439
## 8  campbhu01   0 2.95 0.8750000
## 9  cummica01   1 2.80 1.0303030
## 10 fergubo01   0 5.59 0.0000000
## 11 fishech01   0 1.81 1.4000000
Q3d <- bind_cols(Q3b,Q3c)
## New names:
## * playerID -> playerID...1
## * SHO -> SHO...2
## * ERA -> ERA...3
## * playerID -> playerID...4
## * SHO -> SHO...5
## * ...
Q3d
##    playerID...1 SHO...2 ERA...3 playerID...4 SHO...5 ERA...6      SOBB
## 1     woltery01       0    6.09    woltery01       0    6.09 0.5714286
## 2     wrighha01       0    2.10    wrighha01       0    2.10       Inf
## 3     zettlge01       2    2.16    zettlge01       2    2.16 2.1250000
## 4     zettlge01       0    3.58    zettlge01       0    3.58 1.3333333
## 5     bechtge01       0    4.50    bechtge01       0    4.50 0.0000000
## 6     brainas01       0    4.14    brainas01       0    4.14 0.3333333
## 7     brittji01       1    4.08    brittji01       1    4.08 0.3902439
## 8     campbhu01       0    2.95    campbhu01       0    2.95 0.8750000
## 9     cummica01       1    2.80    cummica01       1    2.80 1.0303030
## 10    fergubo01       0    5.59    fergubo01       0    5.59 0.0000000
## 11    fishech01       0    1.81    fishech01       0    1.81 1.4000000
#BQ
head(Teams)
##   yearID lgID teamID franchID divID Rank  G Ghome  W  L DivWin WCWin LgWin
## 1   1871   NA    BS1      BNA  <NA>    3 31    NA 20 10   <NA>  <NA>     N
## 2   1871   NA    CH1      CNA  <NA>    2 28    NA 19  9   <NA>  <NA>     N
## 3   1871   NA    CL1      CFC  <NA>    8 29    NA 10 19   <NA>  <NA>     N
## 4   1871   NA    FW1      KEK  <NA>    7 19    NA  7 12   <NA>  <NA>     N
## 5   1871   NA    NY2      NNA  <NA>    5 33    NA 16 17   <NA>  <NA>     N
## 6   1871   NA    PH1      PNA  <NA>    1 28    NA 21  7   <NA>  <NA>     Y
##   WSWin   R   AB   H X2B X3B HR BB SO SB CS HBP SF  RA  ER  ERA CG SHO SV
## 1  <NA> 401 1372 426  70  37  3 60 19 73 16  NA NA 303 109 3.55 22   1  3
## 2  <NA> 302 1196 323  52  21 10 60 22 69 21  NA NA 241  77 2.76 25   0  1
## 3  <NA> 249 1186 328  35  40  7 26 25 18  8  NA NA 341 116 4.11 23   0  0
## 4  <NA> 137  746 178  19   8  2 33  9 16  4  NA NA 243  97 5.17 19   1  0
## 5  <NA> 302 1404 403  43  21  1 33 15 46 15  NA NA 313 121 3.72 32   1  0
## 6  <NA> 376 1281 410  66  27  9 46 23 56 12  NA NA 266 137 4.95 27   0  0
##   IPouts  HA HRA BBA SOA   E DP    FP                    name
## 1    828 367   2  42  23 243 24 0.834    Boston Red Stockings
## 2    753 308   6  28  22 229 16 0.829 Chicago White Stockings
## 3    762 346  13  53  34 234 15 0.818  Cleveland Forest Citys
## 4    507 261   5  21  17 163  8 0.803    Fort Wayne Kekiongas
## 5    879 373   7  42  22 235 14 0.840        New York Mutuals
## 6    747 329   3  53  16 194 13 0.845  Philadelphia Athletics
##                           park attendance BPF PPF teamIDBR teamIDlahman45
## 1          South End Grounds I         NA 103  98      BOS            BS1
## 2      Union Base-Ball Grounds         NA 104 102      CHI            CH1
## 3 National Association Grounds         NA  96 100      CLE            CL1
## 4               Hamilton Field         NA 101 107      KEK            FW1
## 5     Union Grounds (Brooklyn)         NA  90  88      NYU            NY2
## 6     Jefferson Street Grounds         NA 102  98      ATH            PH1
##   teamIDretro
## 1         BS1
## 2         CH1
## 3         CL1
## 4         FW1
## 5         NY2
## 6         PH1
Teams.new <- Teams %>% 
  mutate(WP_BPT = R^2 / (R^2 + RA^2), 
         WP = W/G, 
         Diff = WP_BPT - WP)
S15 <- Teams.new %>% filter(yearID == 2015)
S15
##    yearID lgID teamID franchID divID Rank   G Ghome   W  L DivWin WCWin LgWin
## 1    2015   NL    ARI      ARI     W    3 162    81  79 83      N     N     N
## 2    2015   NL    ATL      ATL     E    4 162    81  67 95      N     N     N
## 3    2015   AL    BAL      BAL     E    3 162    78  81 81      N     N     N
## 4    2015   AL    BOS      BOS     E    5 162    81  78 84      N     N     N
## 5    2015   AL    CHA      CHW     C    4 162    81  76 86      N     N     N
## 6    2015   NL    CHN      CHC     C    3 162    81  97 65      N     Y     N
## 7    2015   NL    CIN      CIN     C    5 162    81  64 98      N     N     N
## 8    2015   AL    CLE      CLE     C    3 161    80  81 80      N     N     N
## 9    2015   NL    COL      COL     W    5 162    81  68 94      N     N     N
## 10   2015   AL    DET      DET     C    5 161    81  74 87      N     N     N
## 11   2015   AL    HOU      HOU     W    2 162    81  86 76      N     Y     N
## 12   2015   AL    KCA      KCR     C    1 162    81  95 67      Y     N     Y
## 13   2015   AL    LAA      ANA     W    3 162    81  85 77      N     N     N
## 14   2015   NL    LAN      LAD     W    1 162    81  92 70      Y     N     N
## 15   2015   NL    MIA      FLA     E    3 162    81  71 91      N     N     N
## 16   2015   NL    MIL      MIL     C    4 162    81  68 94      N     N     N
## 17   2015   AL    MIN      MIN     C    2 162    81  83 79      N     N     N
## 18   2015   AL    NYA      NYY     E    2 162    81  87 75      N     Y     N
## 19   2015   NL    NYN      NYM     E    1 162    81  90 72      Y     N     Y
## 20   2015   AL    OAK      OAK     W    5 162    81  68 94      N     N     N
## 21   2015   NL    PHI      PHI     E    5 162    81  63 99      N     N     N
## 22   2015   NL    PIT      PIT     C    2 162    81  98 64      N     Y     N
## 23   2015   NL    SDN      SDP     W    4 162    81  74 88      N     N     N
## 24   2015   AL    SEA      SEA     W    4 162    81  76 86      N     N     N
## 25   2015   NL    SFN      SFG     W    2 162    81  84 78      N     N     N
## 26   2015   NL    SLN      STL     C    1 162    81 100 62      Y     N     N
## 27   2015   AL    TBA      TBD     E    4 162    84  80 82      N     N     N
## 28   2015   AL    TEX      TEX     W    1 162    81  88 74      Y     N     N
## 29   2015   AL    TOR      TOR     E    1 162    81  93 69      Y     N     N
## 30   2015   NL    WAS      WSN     E    2 162    81  83 79      N     N     N
##    WSWin   R   AB    H X2B X3B  HR  BB   SO  SB CS HBP SF  RA  ER  ERA CG SHO
## 1      N 720 5649 1494 289  48 154 490 1312 132 44  33 57 713 659 4.04  1  12
## 2      N 573 5420 1361 251  18 100 471 1107  69 33  44 31 760 698 4.41  3  10
## 3      N 713 5485 1370 246  20 217 418 1331  44 25  51 32 693 646 4.05  0  10
## 4      N 748 5640 1495 294  33 161 478 1148  71 27  46 42 753 694 4.31  3  10
## 5      N 622 5533 1381 260  27 136 404 1231  68 42  65 37 701 643 3.98  7   9
## 6      N 689 5491 1341 272  30 171 567 1518  95 37  74 35 608 546 3.36  6  21
## 7      N 640 5571 1382 257  27 167 496 1255 134 38  42 40 754 700 4.33  2   8
## 8      N 669 5439 1395 303  29 141 533 1157  86 28  39 50 640 584 3.67 11  10
## 9      N 737 5572 1479 274  49 186 388 1283  97 43  33 34 844 799 5.04  4   4
## 10     N 689 5605 1515 289  49 151 455 1259  83 51  41 35 803 746 4.64  7  12
## 11     N 729 5459 1363 278  26 230 486 1392 121 48  56 43 618 572 3.57  5  13
## 12     Y 724 5575 1497 300  42 139 383  973 104 34  77 47 641 601 3.73  2   8
## 13     N 661 5417 1331 243  21 176 435 1150  52 34  58 40 675 630 3.94  2  12
## 14     N 667 5385 1346 263  26 187 563 1258  59 34  60 30 595 553 3.44  6  21
## 15     N 613 5463 1420 236  40 120 375 1150 112 45  39 40 678 638 4.02  0  12
## 16     N 655 5480 1378 274  34 145 412 1299  84 29  41 34 737 682 4.28  1   7
## 17     N 696 5467 1349 277  44 156 439 1264  70 38  40 41 700 653 4.07  2  12
## 18     N 764 5567 1397 272  19 212 554 1227  63 25  63 54 698 652 4.03  3   4
## 19     N 683 5527 1351 295  17 177 488 1290  51 25  68 32 613 557 3.43  1  14
## 20     N 694 5600 1405 277  46 146 475 1119  78 29  40 38 729 664 4.14  5  15
## 21     N 626 5529 1374 272  37 130 387 1274  88 32  54 29 809 749 4.69  1   7
## 22     N 697 5631 1462 292  27 140 461 1322  98 45  89 41 596 532 3.21  0  13
## 23     N 650 5457 1324 260  36 148 426 1327  82 29  40 42 731 655 4.09  1   6
## 24     N 656 5544 1379 262  22 198 478 1336  69 45  36 35 726 677 4.16  6  12
## 25     N 696 5565 1486 288  39 136 457 1159  93 36  49 37 627 597 3.72  7  18
## 26     N 647 5484 1386 288  39 137 506 1267  69 38  66 42 525 478 2.94  1  15
## 27     N 644 5485 1383 278  32 167 436 1310  87 45  84 47 642 604 3.74  1  12
## 28     N 751 5511 1419 279  32 172 503 1233 101 39  76 54 733 680 4.24  5   9
## 29     N 891 5509 1480 308  17 232 570 1151  88 23  54 62 670 609 3.80  7  10
## 30     N 703 5428 1363 265  13 177 539 1344  57 23  44 51 635 577 3.62  4  13
##    SV IPouts   HA HRA BBA  SOA   E  DP    FP                          name
## 1  44   4400 1450 182 500 1215  86 146 0.986          Arizona Diamondbacks
## 2  44   4276 1462 170 550 1148  90 186 0.985                Atlanta Braves
## 3  43   4304 1406 174 483 1233  77 134 0.987             Baltimore Orioles
## 4  40   4345 1486 178 478 1218  97 148 0.984                Boston Red Sox
## 5  37   4358 1443 162 474 1359 101 159 0.983             Chicago White Sox
## 6  48   4384 1276 134 407 1431 111 120 0.982                  Chicago Cubs
## 7  35   4360 1436 177 544 1252  90 131 0.985               Cincinnati Reds
## 8  38   4298 1274 161 425 1407  79 136 0.987             Cleveland Indians
## 9  36   4279 1579 183 579 1112  95 171 0.985              Colorado Rockies
## 10 35   4341 1491 193 489 1100  86 165 0.986                Detroit Tigers
## 11 39   4323 1308 148 423 1280  85 131 0.986                Houston Astros
## 12 56   4356 1372 155 489 1160  88 138 0.985            Kansas City Royals
## 13 46   4322 1355 166 466 1221  93 108 0.984 Los Angeles Angels of Anaheim
## 14 47   4337 1317 145 395 1396  75 133 0.988           Los Angeles Dodgers
## 15 35   4281 1374 141 508 1152  77 162 0.987                 Miami Marlins
## 16 40   4305 1432 176 517 1260 116 164 0.981             Milwaukee Brewers
## 17 45   4329 1506 163 413 1046  86 150 0.986               Minnesota Twins
## 18 48   4373 1416 182 474 1370  93 135 0.985              New York Yankees
## 19 50   4388 1341 152 383 1337  88 131 0.986                 New York Mets
## 20 28   4334 1402 172 474 1179 126 154 0.979             Oakland Athletics
## 21 35   4309 1592 191 488 1153 117 145 0.981         Philadelphia Phillies
## 22 54   4469 1392 110 453 1338 122 177 0.981            Pittsburgh Pirates
## 23 41   4321 1371 171 516 1393  92 138 0.985              San Diego Padres
## 24 45   4389 1430 181 491 1283  94 155 0.985              Seattle Mariners
## 25 41   4333 1344 155 431 1165  78 145 0.987          San Francisco Giants
## 26 62   4394 1359 123 477 1329  96 159 0.984           St. Louis Cardinals
## 27 60   4360 1314 175 477 1355  95 118 0.984                Tampa Bay Rays
## 28 45   4328 1459 171 508 1095 119 169 0.981                 Texas Rangers
## 29 34   4323 1353 173 397 1117  88 145 0.985             Toronto Blue Jays
## 30 41   4304 1366 145 364 1342  90 125 0.985          Washington Nationals
##                             park attendance BPF PPF teamIDBR teamIDlahman45
## 1                    Chase Field    2080145 107 106      ARI            ARI
## 2                   Turner Field    2001392  97  97      ATL            ATL
## 3    Oriole Park at Camden Yards    2281202 103 104      BAL            BAL
## 4                 Fenway Park II    2880694 104 107      BOS            BOS
## 5            U.S. Cellular Field    1755810  92  93      CHW            CHA
## 6                  Wrigley Field    2919122 100 100      CHC            CHN
## 7       Great American Ball Park    2419506 101 101      CIN            CIN
## 8              Progressive Field    1388905 106 106      CLE            CLE
## 9                    Coors Field    2506789 119 118      COL            COL
## 10                 Comerica Park    2726048  97  98      DET            DET
## 11              Minute Maid Park    2153585  97  99      HOU            HOU
## 12              Kauffman Stadium    2708549 104 103      KCR            KCA
## 13      Angel Stadium of Anaheim    3012765  94  95      LAA            ANA
## 14                Dodger Stadium    3764815 101  98      LAD            LAN
## 15                  Marlins Park    1752235  98  97      MIA            FLO
## 16                   Miller Park    2542558 101 101      MIL            ML4
## 17                  Target Field    2220054 103 104      MIN            MIN
## 18            Yankee Stadium III    3193795  99 101      NYY            NYA
## 19                    Citi Field    2569753  94  92      NYM            NYN
## 20                 O.co Coliseum    1768175  97  98      OAK            OAK
## 21            Citizens Bank Park    1831080  98  98      PHI            PHI
## 22                      PNC Park    2498596  99  97      PIT            PIT
## 23                    Petco Park    2459742  98  97      SDP            SDN
## 24                  Safeco Field    2193581  92  94      SEA            SEA
## 25                     AT&T Park    3375882  99  97      SFG            SFN
## 26             Busch Stadium III    3520889 102 101      STL            SLN
## 27               Tropicana Field    1287054 100 102      TBR            TBA
## 28 Rangers Ballpark in Arlington    2491875 102 105      TEX            TEX
## 29                 Rogers Centre    2794891  99  98      TOR            TOR
## 30                Nationals Park    2619843 102  99      WSN            MON
##    teamIDretro    WP_BPT        WP         Diff
## 1          ARI 0.5048847 0.4876543  0.017230419
## 2          ATL 0.3624224 0.4135802 -0.051157805
## 3          BAL 0.5142219 0.5000000  0.014221873
## 4          BOS 0.4966689 0.4814815  0.015187443
## 5          CHA 0.4404994 0.4691358 -0.028636420
## 6          CHN 0.5622092 0.5987654 -0.036556250
## 7          CIN 0.4187642 0.3950617  0.023702508
## 8          CLE 0.5221434 0.5031056  0.019037858
## 9          COL 0.4326299 0.4197531  0.012876812
## 10         DET 0.4240360 0.4596273 -0.035591350
## 11         HOU 0.5818495 0.5308642  0.050985337
## 12         KCA 0.5605819 0.5864198 -0.025837885
## 13         ANA 0.4895221 0.5246914 -0.035169249
## 14         LAN 0.5568672 0.5679012 -0.011034037
## 15         MIA 0.4497787 0.4382716  0.011507138
## 16         MIL 0.4412957 0.4197531  0.021542581
## 17         MIN 0.4971347 0.5123457 -0.015210985
## 18         NYA 0.5450518 0.5370370  0.008014789
## 19         NYN 0.5538552 0.5555556 -0.001700324
## 20         OAK 0.4754189 0.4197531  0.055665860
## 21         PHI 0.3745146 0.3888889 -0.014374263
## 22         PIT 0.5776392 0.6049383 -0.027299081
## 23         SDN 0.4415479 0.4567901 -0.015242187
## 24         SEA 0.4494784 0.4691358 -0.019657417
## 25         SFN 0.5520127 0.5185185  0.033494199
## 26         SLN 0.6029797 0.6172840 -0.014304264
## 27         TBA 0.5015552 0.4938272  0.007728046
## 28         TEX 0.5121276 0.5432099 -0.031082281
## 29         TOR 0.6387940 0.5740741  0.064719889
## 30         WAS 0.5506912 0.5123457  0.038345514

```