Email             :
RPubs            : https://rpubs.com/sausanramadhani/
Jurusan          : Statistika
Address         : ARA Center, Matana University Tower
                         Jl. CBD Barat Kav, RT.1, Curug Sangereng, Kelapa Dua, Tangerang, Banten 15810.


Soal 1

Buatlah fungsi untuk menghitung integral tentu dan tak tentu

Jawaban Soal 1

library(mosaicCalc)
IntegralTentudanTakTentu <- function(x)
{
  Fungsi=makeFun(x^2+3*x~x)
  Integral= antiD(Fungsi(x)~x)
  Integral_Tentu=Integral(1)-Integral(5)
  Integral_Tak_Tentu=Integral(1:8)
  return (cat(c("Integral Tentu :", Integral_Tentu, "\n", 
                "Integral Tak Tentu :", Integral_Tak_Tentu)))
}
IntegralTentudanTakTentu(x)
## Integral Tentu : -77.3333333333334 
##  Integral Tak Tentu : 1.83333333333333 8.66666666666667 22.5 45.3333333333333 79.1666666666667 126 187.833333333333 266.666666666667

Soal 2

Buatlah fungsi untuk menghitung Luas Lingkaran, Keliling Lingkaran, dan, Volume Bola

Jawaban Soal 2

LuKelVol <- function(phi,r)
{
  luas_lingkaran = phi*r*r
  keliling_lingkaran = 2*phi*r
  volume_bola = (4/3)*phi*r*r*r
  return(cat(c("luas lingkaran:",
               luas_lingkaran, sep = "\n",
               "keliling lingkaran:", keliling_lingkaran, sep = "\n",
               "volume bola:", volume_bola)))
}
LuKelVol(3,5)
## luas lingkaran: 75 
##  keliling lingkaran: 30 
##  volume bola: 500

Soal 3

Buatlah fungsi untuk menghitung Nilai Maksimum, Minimum, Rata-rata, Median, Mode, Variansi, Standard Deviasi pada data berfrekuensi

Jawaban Soal 3

berat badan frekuensi
30 2
40 5
50 7
60 4
70 3
80 1
90 5
berat_badan<-seq(30,90,10)
frek<-c(2,5,7,4,3,1,5)

komet=data.frame(berat_badan,frek)

MaksMinRat<-function(x,frekuensi)
{
  n=27
  tbm=49.5
  d1=2
  d2=3
  interval=10
  nilai_maks=max(x)
  nilai_min=min(x)
  mean=sum(berat_badan)/n
  median=round(sum(berat_badan)+1) / 2
  mode=tbm+interval*(d1/(d1+d2))
  b=x-mean
  c=sum((b**2)*frekuensi)
  variansi=c/(sum(frekuensi)-1)
  standart_deviasi=sqrt(variansi)
  return(cat("nilai maksimum :", nilai_maks,"\n",
             "nilai minimum :", nilai_min,"\n",
             "rata-rata :", mean,"\n",
             "median :", median,"\n",
             "modus :", mode,"\n",
             "variansi :", variansi,"\n",
             "standart deviasi :", standart_deviasi,"\n"))
}
MaksMinRat(komet$berat_badan,komet$frek)
## nilai maksimum : 90 
##  nilai minimum : 30 
##  rata-rata : 15.55556 
##  median : 210.5 
##  modus : 53.5 
##  variansi : 2321.795 
##  standart deviasi : 48.18501
LS0tDQp0aXRsZTogIkFsZ29yaXRtYSBkYW4gU3RhdGlzdGlrYSBCaXNuaXMiDQpzdWJ0aXRsZTogIlR1Z2FzIDUiDQphdXRob3I6ICJTYXVzYW4gUmFtYWRoYW5pICgyMDIxNDkyMDAwNCkiDQpkYXRlOiAiYHIgZm9ybWF0KFN5cy5EYXRlKCksICclQiAlZCwgJVknKWAiDQpvdXRwdXQ6IA0KICBodG1sX2RvY3VtZW50OiANCiAgICBodG1sX2RvY3VtZW50OiBudWxsDQogICAgY29kZV9mb2xkaW5nOiBoaWRlDQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZmxvYXQ6DQogICAgICBjb2xsYXBzZWQ6IHllcw0KICAgIG51bWJlcl9zZWN0aW9uczogbm8NCiAgICBjb2RlX2Rvd25sb2FkOiB5ZXMNCiAgICB0aGVtZTogc2FuZHN0b25lDQogICAgY3NzOiBzdHlsZTEuY3NzDQogICAgaGlnaGxpZ2h0OiBtb25vY2hyb21lDQotLS0NCg0KDQo8aW1nIHN0eWxlPSJmbG9hdDogcmlnaHQ7IG1hcmdpbjogMHB4IDEwMHB4IDBweCAwcHg7IHdpZHRoOjI1JSIgc3JjPSJmb3RvcHJvZmlsLnBuZyIvPiANCg0KYGBge3IgbG9nbywgZWNobz1GQUxTRSxmaWcuYWxpZ249J2NlbnRlcicsIG91dC53aWR0aCA9ICczMCUnfQ0Ka25pdHI6OmluY2x1ZGVfZ3JhcGhpY3MoImxvZ29tYXRhbmEucG5nIikNCmBgYA0KDQpFbWFpbCAmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsmbmJzcDs6ICBzYXVzYW4ucmFtYWRoYW5pQHN0dWRlbnQubWF0YW5hdW5pdmVyc2l0eS5hYy5pZCA8YnI+DQpSUHVicyAgJm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7OiBodHRwczovL3JwdWJzLmNvbS9zYXVzYW5yYW1hZGhhbmkvIDxicj4NCkp1cnVzYW4gJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOzogW1N0YXRpc3Rpa2FdKGh0dHBzOi8vbWF0YW5hdW5pdmVyc2l0eS5hYy5pZC8/bHk9YWNhZGVtaWMmYz1zYikgPGJyPg0KQWRkcmVzcyAgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7IDogQVJBIENlbnRlciwgTWF0YW5hIFVuaXZlcnNpdHkgVG93ZXIgPGJyPg0KJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsmbmJzcDsgSmwuIENCRCBCYXJhdCBLYXYsIFJULjEsIEN1cnVnIFNhbmdlcmVuZywgS2VsYXBhIER1YSwgVGFuZ2VyYW5nLCBCYW50ZW4gMTU4MTAuDQoNCioqKioNCg0KIyBTb2FsIDENCg0KQnVhdGxhaCBmdW5nc2kgdW50dWsgbWVuZ2hpdHVuZyBpbnRlZ3JhbCB0ZW50dSBkYW4gdGFrIHRlbnR1DQoNCiMjIEphd2FiYW4gU29hbCAxDQoNCg0KYGBge3IsIG1lc3NhZ2U9RkFMU0V9DQpsaWJyYXJ5KG1vc2FpY0NhbGMpDQpJbnRlZ3JhbFRlbnR1ZGFuVGFrVGVudHUgPC0gZnVuY3Rpb24oeCkNCnsNCiAgRnVuZ3NpPW1ha2VGdW4oeF4yKzMqeH54KQ0KICBJbnRlZ3JhbD0gYW50aUQoRnVuZ3NpKHgpfngpDQogIEludGVncmFsX1RlbnR1PUludGVncmFsKDEpLUludGVncmFsKDUpDQogIEludGVncmFsX1Rha19UZW50dT1JbnRlZ3JhbCgxOjgpDQogIHJldHVybiAoY2F0KGMoIkludGVncmFsIFRlbnR1IDoiLCBJbnRlZ3JhbF9UZW50dSwgIlxuIiwgDQogICAgICAgICAgICAgICAgIkludGVncmFsIFRhayBUZW50dSA6IiwgSW50ZWdyYWxfVGFrX1RlbnR1KSkpDQp9DQpJbnRlZ3JhbFRlbnR1ZGFuVGFrVGVudHUoeCkNCmBgYA0KDQoNCiMgU29hbCAyDQoNCkJ1YXRsYWggZnVuZ3NpIHVudHVrIG1lbmdoaXR1bmcgTHVhcyBMaW5na2FyYW4sIEtlbGlsaW5nIExpbmdrYXJhbiwgZGFuLCBWb2x1bWUgQm9sYQ0KDQojIyBKYXdhYmFuIFNvYWwgMg0KDQpgYGB7cn0NCkx1S2VsVm9sIDwtIGZ1bmN0aW9uKHBoaSxyKQ0Kew0KICBsdWFzX2xpbmdrYXJhbiA9IHBoaSpyKnINCiAga2VsaWxpbmdfbGluZ2thcmFuID0gMipwaGkqcg0KICB2b2x1bWVfYm9sYSA9ICg0LzMpKnBoaSpyKnIqcg0KICByZXR1cm4oY2F0KGMoImx1YXMgbGluZ2thcmFuOiIsDQogICAgICAgICAgICAgICBsdWFzX2xpbmdrYXJhbiwgc2VwID0gIlxuIiwNCiAgICAgICAgICAgICAgICJrZWxpbGluZyBsaW5na2FyYW46Iiwga2VsaWxpbmdfbGluZ2thcmFuLCBzZXAgPSAiXG4iLA0KICAgICAgICAgICAgICAgInZvbHVtZSBib2xhOiIsIHZvbHVtZV9ib2xhKSkpDQp9DQpMdUtlbFZvbCgzLDUpDQpgYGANCg0KDQojIFNvYWwgMw0KDQpCdWF0bGFoIGZ1bmdzaSB1bnR1ayBtZW5naGl0dW5nIE5pbGFpIE1ha3NpbXVtLCBNaW5pbXVtLCBSYXRhLXJhdGEsIE1lZGlhbiwgTW9kZSwgVmFyaWFuc2ksIFN0YW5kYXJkIERldmlhc2kgcGFkYSBkYXRhIGJlcmZyZWt1ZW5zaQ0KDQojIyBKYXdhYmFuIFNvYWwgMw0KDQp8fHwNCnw6LS0tLS0tOnw6LS0tLS0tOnwNCnwqKmJlcmF0IGJhZGFuKip8KipmcmVrdWVuc2kqKnwNCnwzMHwyfA0KfDQwfDV8DQp8NTB8N3wNCnw2MHw0fA0KfDcwfDN8DQp8ODB8MXwNCnw5MHw1fA0KDQpgYGB7cn0NCmJlcmF0X2JhZGFuPC1zZXEoMzAsOTAsMTApDQpmcmVrPC1jKDIsNSw3LDQsMywxLDUpDQoNCmtvbWV0PWRhdGEuZnJhbWUoYmVyYXRfYmFkYW4sZnJlaykNCg0KTWFrc01pblJhdDwtZnVuY3Rpb24oeCxmcmVrdWVuc2kpDQp7DQogIG49MjcNCiAgdGJtPTQ5LjUNCiAgZDE9Mg0KICBkMj0zDQogIGludGVydmFsPTEwDQogIG5pbGFpX21ha3M9bWF4KHgpDQogIG5pbGFpX21pbj1taW4oeCkNCiAgbWVhbj1zdW0oYmVyYXRfYmFkYW4pL24NCiAgbWVkaWFuPXJvdW5kKHN1bShiZXJhdF9iYWRhbikrMSkgLyAyDQogIG1vZGU9dGJtK2ludGVydmFsKihkMS8oZDErZDIpKQ0KICBiPXgtbWVhbg0KICBjPXN1bSgoYioqMikqZnJla3VlbnNpKQ0KICB2YXJpYW5zaT1jLyhzdW0oZnJla3VlbnNpKS0xKQ0KICBzdGFuZGFydF9kZXZpYXNpPXNxcnQodmFyaWFuc2kpDQogIHJldHVybihjYXQoIm5pbGFpIG1ha3NpbXVtIDoiLCBuaWxhaV9tYWtzLCJcbiIsDQogICAgICAgICAgICAgIm5pbGFpIG1pbmltdW0gOiIsIG5pbGFpX21pbiwiXG4iLA0KICAgICAgICAgICAgICJyYXRhLXJhdGEgOiIsIG1lYW4sIlxuIiwNCiAgICAgICAgICAgICAibWVkaWFuIDoiLCBtZWRpYW4sIlxuIiwNCiAgICAgICAgICAgICAibW9kdXMgOiIsIG1vZGUsIlxuIiwNCiAgICAgICAgICAgICAidmFyaWFuc2kgOiIsIHZhcmlhbnNpLCJcbiIsDQogICAgICAgICAgICAgInN0YW5kYXJ0IGRldmlhc2kgOiIsIHN0YW5kYXJ0X2Rldmlhc2ksIlxuIikpDQp9DQpNYWtzTWluUmF0KGtvbWV0JGJlcmF0X2JhZGFuLGtvbWV0JGZyZWspDQpgYGANCg0K