Email             :
RPubs            : https://rpubs.com/evelintrivena
Jurusan          : fisika medis
Address         : ARA Center, Matana University Tower
                         Jl. CBD Barat Kav, RT.1, Curug Sangereng, Kelapa Dua, Tangerang, Banten 15810.


1. Integral Tentu dan Tak Tentu

Tentukan hasil dari integral tentu berikut. \[∫^2_1(2x^2-3)^2 dx\] Tentukan hasil dari integral tak tentu berikut. \[∫(x^2) dx\]

library(mosaicCalc)
f<-function(x)(2*x^2-3)^2
integrate(f,-1,2)
## 17.4 with absolute error < 1.9e-13
antiD(x^2~x)
## function (x, C = 0) 
## 1/3 * x^3 + C

\[\begin{align} ∫^2_1(2x^2-3)^2 dx &=∫^2_1 (4x^4-12x^2+9)dx\\ &={4\over5}x^5-4x^3+9x]^2_1\\ &=({4\over5}2^5+4.2^3+9.2)-({4\over5}(1)^5+4.(1)^3+9.(1))\\ &=(25{3\over5}-14)-(5{4\over5})\\ &=17{2\over5}\\ \end{align}\]


\[\begin{align} ∫(x^2) dx &= {1\over2+1}x^{2+1}+c\\ &={1\over3}x^3+c\\ \end{align}\]

2. Luas Lingkaran, Keliling Lingkaran, dan, Volume Bola

Keterangan :

  • D = Diameter

  • r = Jari-jari

  • π = 22/7 atau 3,14

Rumus luas lingkaran

\(L = π. r^2\) atau \(L= {1\over 4}π.d^2\)

Rumus Keliling Lingkaran

\(K=π.d\) atau \(K=2.π.r\)

Rumus Volume Bola

\(V = {4\over3}.π.r^3\)

#Diketahui sebuah lingkaran memiliki jari-jari(r) 14 cm.
Luling <- function(pi,r)
{
  Luas = (pi*r^2)
  Keliling = (2*pi*r)
  Volume = (4/3*pi*r^3)
  return(cat(c("Luas lingkaran:",Luas, "\n",
               "Keliling lingkaran:", Keliling,"\n",
               "Volume bola:",Volume)))
}
Luling(3.14,14)
## Luas lingkaran: 615.44 
##  Keliling lingkaran: 87.92 
##  Volume bola: 11488.2133333333

3. Nilai Maksimum, Minimum, Rata-rata, Median, Mode, Variansi, Standard Deviasi pada data berfrekuensi

Data Nilai Mata Kuliah Algoritma & Struktur data

Nilai Frekuensi
75 3
80 5
85 7
90 5
95 2
100 3

Ukuran Pemusatan Data

Nilai<-seq(75,100,5)
Frek<-c(3,5,7,5,2,3)

# Median
fi=25
tbm=85-0.5   # Tepi bawah kelas median
interval=p=5    # Panjang interval kelas
fkii=8          # frekuensi kumulatif data di bawah kelas median
f= 7            # frekuensi data pada kelas median

# Mode
interval=p=5    # Panjang kelas interval
tbm=84.5      # Tepi bawah kelas modus
d1=2          # Selisih frekuensi kelas modus dengan kelas sebelumnya 
d2=2          # Selisih frekuensi kelas modus dengan kelas sesudahnya

# Variansi
fi=25                    # Jumlah frekuensi
xi=(Nilai/2)             # Menentukan titik tengah
fixi=(xi*Frek)          # Menjumlahkan nilai (titik tengah x frekuensi)
fixi2=xi^2*Frek     # Mengkuadratkan fixi

Pemusatan_data<-function(Nilai,frek)
{
  Nilaimax=max(Nilai)
  Nilaimin=min(Nilai)
  Nilaimean=sum(Nilai*Frek)/sum(Frek)
  Median=tbm+((fi/2-fkii)/f)*p
  Mode=tbm+interval*(d1/(d1+d2))
  Variansi=(sum(fixi2)-(sum(fixi)^2/fi))/fi-1
 std=sqrt(Variansi)
  return(cat("Nilai maksimumnya adalah ",Nilaimax,"\n",
               "Nilai minimumnya adalah ", Nilaimin,"\n",
               "Reratanya adalah" , Nilaimean,"\n",
             "Mediannya adalah", Median,"\n",
             "Modenya adalah ",Mode,"\n",
             "Variansinya adalah ",Variansi,"\n",
             "Standard Devasinya adalah ",std))
}
Pemusatan_data(Nilai,frek)
## Nilai maksimumnya adalah  100 
##  Nilai minimumnya adalah  75 
##  Reratanya adalah 86.4 
##  Mediannya adalah 87.71429 
##  Modenya adalah  87 
##  Variansinya adalah  12.76 
##  Standard Devasinya adalah  3.572114
LS0tDQp0aXRsZTogIkFMR09SSVRNQSBEQU4gU1RSVUtUVVIgREFUQSINCnN1YnRpdGxlOiAiflR1Z2FzIDR+Ig0KYXV0aG9yOiAiRXZlbGluIFRyaWVuYSBTICgyMDIxNDUyMDAxMCkiDQpkYXRlOiAiYHIgZm9ybWF0KFN5cy5EYXRlKCksICclQiAlZCwgJVknKWAiDQpvdXRwdXQ6IA0KICBodG1sX2RvY3VtZW50OiANCiAgICBodG1sX2RvY3VtZW50OiBudWxsDQogICAgY29kZV9mb2xkaW5nOiBzaG93DQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZmxvYXQ6DQogICAgICBjb2xsYXBzZWQ6IHllcw0KICAgIG51bWJlcl9zZWN0aW9uczogbm8NCiAgICBjb2RlX2Rvd25sb2FkOiB5ZXMNCiAgICB0aGVtZTogc2FuZHN0b25lDQogICAgY3NzOiBzdHlsZTEuY3NzDQogICAgaGlnaGxpZ2h0OiBtb25vY2hyb21lDQotLS0NCg0KDQo8aW1nIHN0eWxlPSJmbG9hdDogcmlnaHQ7IG1hcmdpbjogMHB4IDEwMHB4IDBweCAwcHg7IHdpZHRoOjI1JSIgc3JjPSJ2ZW5hLmpwZyIvPiANCg0KYGBge3IgbG9nbywgZWNobz1GQUxTRSxmaWcuYWxpZ249J2NlbnRlcicsIG91dC53aWR0aCA9ICczMCUnfQ0Ka25pdHI6OmluY2x1ZGVfZ3JhcGhpY3MoImxvZ28ucG5nIikNCmBgYA0KDQpFbWFpbCAmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsmbmJzcDs6ICB0cml2ZW5hc2FtYWxpd3VAZ21haWwuY29tIDxicj4NClJQdWJzICAmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDs6IGh0dHBzOi8vcnB1YnMuY29tL2V2ZWxpbnRyaXZlbmEgPGJyPg0KSnVydXNhbiAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7OiBbZmlzaWthIG1lZGlzXShodHRwczovL21hdGFuYXVuaXZlcnNpdHkuYWMuaWQvP2x5PWFjYWRlbWljJmM9c2IpIDxicj4NCkFkZHJlc3MgICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyA6IEFSQSBDZW50ZXIsIE1hdGFuYSBVbml2ZXJzaXR5IFRvd2VyIDxicj4NCiZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7Jm5ic3A7IEpsLiBDQkQgQmFyYXQgS2F2LCBSVC4xLCBDdXJ1ZyBTYW5nZXJlbmcsIEtlbGFwYSBEdWEsIFRhbmdlcmFuZywgQmFudGVuIDE1ODEwLg0KDQoqKioqDQoNCiMgMS4gSW50ZWdyYWwgVGVudHUgZGFuIFRhayBUZW50dQ0KDQpUZW50dWthbiBoYXNpbCBkYXJpIGludGVncmFsIHRlbnR1IGJlcmlrdXQuDQokJOKIq14yXzEoMnheMi0zKV4yIGR4JCQNClRlbnR1a2FuIGhhc2lsIGRhcmkgaW50ZWdyYWwgdGFrIHRlbnR1IGJlcmlrdXQuDQokJOKIqyh4XjIpIGR4JCQNCmBgYHtyIG1lc3NhZ2U9RkFMU0V9DQpsaWJyYXJ5KG1vc2FpY0NhbGMpDQpmPC1mdW5jdGlvbih4KSgyKnheMi0zKV4yDQppbnRlZ3JhdGUoZiwtMSwyKQ0KYW50aUQoeF4yfngpDQoNCmBgYA0KDQpcYmVnaW57YWxpZ259DQriiKteMl8xKDJ4XjItMyleMiBkeCAmPeKIq14yXzEgKDR4XjQtMTJ4XjIrOSlkeFxcDQoNCiY9ezRcb3ZlcjV9eF41LTR4XjMrOXhdXjJfMVxcDQoNCiY9KHs0XG92ZXI1fTJeNSs0LjJeMys5LjIpLSh7NFxvdmVyNX0oMSleNSs0LigxKV4zKzkuKDEpKVxcDQoNCiY9KDI1ezNcb3ZlcjV9LTE0KS0oNXs0XG92ZXI1fSlcXA0KDQomPTE3ezJcb3ZlcjV9XFwNClxlbmR7YWxpZ259DQoNCioqKioNCg0KXGJlZ2lue2FsaWdufQ0K4oirKHheMikgZHggJj0gezFcb3ZlcjIrMX14XnsyKzF9K2NcXA0KDQomPXsxXG92ZXIzfXheMytjXFwNClxlbmR7YWxpZ259DQoNCg0KIyAyLiBMdWFzIExpbmdrYXJhbiwgS2VsaWxpbmcgTGluZ2thcmFuLCBkYW4sIFZvbHVtZSBCb2xhDQoqKktldGVyYW5nYW4gOiAqKg0KDQoqIEQgPSBEaWFtZXRlcg0KDQoqIHIgPSBKYXJpLWphcmkNCg0KKiDPgCA9IDIyLzcgYXRhdSAzLDE0DQoNCipSdW11cyBsdWFzIGxpbmdrYXJhbioNCg0KJEwgPSDPgC4gcl4yJA0KYXRhdQ0KJEw9IHsxXG92ZXIgNH3PgC5kXjIkDQoNCipSdW11cyBLZWxpbGluZyBMaW5na2FyYW4qDQoNCiRLPc+ALmQkDQphdGF1DQokSz0yLs+ALnIkDQoNCipSdW11cyBWb2x1bWUgQm9sYSoNCg0KJFYgPSB7NFxvdmVyM30uz4Aucl4zJA0KDQpgYGB7cn0NCiNEaWtldGFodWkgc2VidWFoIGxpbmdrYXJhbiBtZW1pbGlraSBqYXJpLWphcmkocikgMTQgY20uDQpMdWxpbmcgPC0gZnVuY3Rpb24ocGkscikNCnsNCiAgTHVhcyA9IChwaSpyXjIpDQogIEtlbGlsaW5nID0gKDIqcGkqcikNCiAgVm9sdW1lID0gKDQvMypwaSpyXjMpDQogIHJldHVybihjYXQoYygiTHVhcyBsaW5na2FyYW46IixMdWFzLCAiXG4iLA0KICAgICAgICAgICAgICAgIktlbGlsaW5nIGxpbmdrYXJhbjoiLCBLZWxpbGluZywiXG4iLA0KICAgICAgICAgICAgICAgIlZvbHVtZSBib2xhOiIsVm9sdW1lKSkpDQp9DQpMdWxpbmcoMy4xNCwxNCkNCmBgYA0KDQojIDMuIE5pbGFpIE1ha3NpbXVtLCBNaW5pbXVtLCBSYXRhLXJhdGEsIE1lZGlhbiwgTW9kZSwgVmFyaWFuc2ksIFN0YW5kYXJkIERldmlhc2kgcGFkYSBkYXRhIGJlcmZyZWt1ZW5zaQ0KDQoqKkRhdGEgTmlsYWkgTWF0YSBLdWxpYWggQWxnb3JpdG1hICYgU3RydWt0dXIgZGF0YSoqDQoNCnx8DQp8Oi0tLS06fDotLS0tOnwNCioqTmlsYWkqKnwqKkZyZWt1ZW5zaSoqfA0KNzV8M3wNCjgwfDV8DQo4NXw3fA0KOTB8NXwNCjk1fDJ8DQoxMDB8M3wNCg0KIyMgVWt1cmFuIFBlbXVzYXRhbiBEYXRhDQpgYGB7cn0NCk5pbGFpPC1zZXEoNzUsMTAwLDUpDQpGcmVrPC1jKDMsNSw3LDUsMiwzKQ0KDQojIE1lZGlhbg0KZmk9MjUNCnRibT04NS0wLjUgICAjIFRlcGkgYmF3YWgga2VsYXMgbWVkaWFuDQppbnRlcnZhbD1wPTUgICAgIyBQYW5qYW5nIGludGVydmFsIGtlbGFzDQpma2lpPTggICAgICAgICAgIyBmcmVrdWVuc2kga3VtdWxhdGlmIGRhdGEgZGkgYmF3YWgga2VsYXMgbWVkaWFuDQpmPSA3ICAgICAgICAgICAgIyBmcmVrdWVuc2kgZGF0YSBwYWRhIGtlbGFzIG1lZGlhbg0KDQojIE1vZGUNCmludGVydmFsPXA9NSAgICAjIFBhbmphbmcga2VsYXMgaW50ZXJ2YWwNCnRibT04NC41ICAgICAgIyBUZXBpIGJhd2FoIGtlbGFzIG1vZHVzDQpkMT0yICAgICAgICAgICMgU2VsaXNpaCBmcmVrdWVuc2kga2VsYXMgbW9kdXMgZGVuZ2FuIGtlbGFzIHNlYmVsdW1ueWEgDQpkMj0yICAgICAgICAgICMgU2VsaXNpaCBmcmVrdWVuc2kga2VsYXMgbW9kdXMgZGVuZ2FuIGtlbGFzIHNlc3VkYWhueWENCg0KIyBWYXJpYW5zaQ0KZmk9MjUgICAgICAgICAgICAgICAgICAgICMgSnVtbGFoIGZyZWt1ZW5zaQ0KeGk9KE5pbGFpLzIpICAgICAgICAgICAgICMgTWVuZW50dWthbiB0aXRpayB0ZW5nYWgNCmZpeGk9KHhpKkZyZWspICAgICAgICAgICMgTWVuanVtbGFoa2FuIG5pbGFpICh0aXRpayB0ZW5nYWggeCBmcmVrdWVuc2kpDQpmaXhpMj14aV4yKkZyZWsgICAgICMgTWVuZ2t1YWRyYXRrYW4gZml4aQ0KDQpQZW11c2F0YW5fZGF0YTwtZnVuY3Rpb24oTmlsYWksZnJlaykNCnsNCiAgTmlsYWltYXg9bWF4KE5pbGFpKQ0KICBOaWxhaW1pbj1taW4oTmlsYWkpDQogIE5pbGFpbWVhbj1zdW0oTmlsYWkqRnJlaykvc3VtKEZyZWspDQogIE1lZGlhbj10Ym0rKChmaS8yLWZraWkpL2YpKnANCiAgTW9kZT10Ym0raW50ZXJ2YWwqKGQxLyhkMStkMikpDQogIFZhcmlhbnNpPShzdW0oZml4aTIpLShzdW0oZml4aSleMi9maSkpL2ZpLTENCiBzdGQ9c3FydChWYXJpYW5zaSkNCiAgcmV0dXJuKGNhdCgiTmlsYWkgbWFrc2ltdW1ueWEgYWRhbGFoICIsTmlsYWltYXgsIlxuIiwNCiAgICAgICAgICAgICAgICJOaWxhaSBtaW5pbXVtbnlhIGFkYWxhaCAiLCBOaWxhaW1pbiwiXG4iLA0KICAgICAgICAgICAgICAgIlJlcmF0YW55YSBhZGFsYWgiICwgTmlsYWltZWFuLCJcbiIsDQogICAgICAgICAgICAgIk1lZGlhbm55YSBhZGFsYWgiLCBNZWRpYW4sIlxuIiwNCiAgICAgICAgICAgICAiTW9kZW55YSBhZGFsYWggIixNb2RlLCJcbiIsDQogICAgICAgICAgICAgIlZhcmlhbnNpbnlhIGFkYWxhaCAiLFZhcmlhbnNpLCJcbiIsDQogICAgICAgICAgICAgIlN0YW5kYXJkIERldmFzaW55YSBhZGFsYWggIixzdGQpKQ0KfQ0KUGVtdXNhdGFuX2RhdGEoTmlsYWksZnJlaykNCg0KYGBgDQoNCg==