Load libraries

library(compositions)
library(ggplot2)
library(reshape2)
library(tibble)

Load microbiome OTU table of the V4 region of the SSU rRNA sequences using 515F and 806R primers

path="041918BEillcus515F-pr.fasta.otus.fa.OTU.clean.txt"
data <- read.table(path, header=T, sep="\t")
data2 <-data[,6:13]

#Create a count compositional dataset and perform a clr transformation

dc = ccomp(t(data2))
comp = clr(dc)
names(comp)<-data[,1]

Format the data for plotting

compdf<-as.data.frame(comp)
compdf$tissue<-c("Fat Body","Ovary","Spermatheca","Egg","Fat Body","Ovary","Spermatheca","Egg")
compdf$spotted<-c(TRUE,TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,FALSE)
longcomp<- melt(compdf, value.name="clr")
Using tissue, spotted as id variables
ggplot(longcomp[longcomp$variable=="OTU_6",], aes(x=tissue, y=clr, fill=spotted)) + geom_bar(stat="identity", position="dodge") + ggtitle("Presence of Nosema maddoxi OTU in Nezara viridula") +     ylab("Centered Log Ratio") + xlab("Tissue")

ggplot(data = longcomp[longcomp$variable=="OTU_6",], aes(x = spotted, y = clr, group = tissue)) + geom_boxplot(width=0.3, aes(group=spotted), fill='#A4A4A4') +
  geom_line(aes(color = tissue), size = 1) +
  geom_point(aes(color = tissue), size = 2) +
   ylab("Centered Log Ratio") + xlab("Spotted") + ggtitle("Presence of Nosema maddoxi OTU in Nezara viridula") +
   guides(color=guide_legend("Tissue"))

Examine the CLR values

longcomp[longcomp$variable=="OTU_6",]

Examine the raw counts

t(data[6,])
                                        6                                                                                                                                                                                                    
otu.name                                "OTU_6"                                                                                                                                                                                              
Taxonomy                                "___af327408.1__gi:33340569_  ;k__fungi;p__microsporidia;c__microsporidia;o__microsporidia;f__burenellidae;g__vairimorpha;s__vairimorpha cheracis;superkingdom__eukaryota;suborder__pansporoblastina"
Percent.Homology                        "96.26168"                                                                                                                                                                                           
evalue                                  "6.11e-94"                                                                                                                                                                                           
bitscore                                "347.533"                                                                                                                                                                                            
X1.Nezara.viridula.Infected.Fat.Body    "4014"                                                                                                                                                                                               
X2.Nezara.viridula.Infected.Ovary       "4692"                                                                                                                                                                                               
X3.Nezara.viridula.Infected.Spermatheca "199"                                                                                                                                                                                                
X4.Nezara.viridula.Infected.Egg         "132"                                                                                                                                                                                                
X5.Nezara.viridula.Clean.Fat.Body       "22"                                                                                                                                                                                                 
X6.Nezara.viridula.Clean.Ovary          "24"                                                                                                                                                                                                 
X7.Nezara.viridula.Clean.Spermatheca    "20"                                                                                                                                                                                                 
X8.Nezara.viridula.Clean.Egg            "13"                                                                                                                                                                                                 

Export the data

tempdf <-as.data.frame(t(compdf[,1:392]))
tempdf$taxa <-data$Taxonomy
write.table(tempdf, file="clrOTU.txt", sep="\t")
LS0tCnRpdGxlOiAiTWljcm9iaWFsIHRheGEgcHJlc2VudCBpbiBkaXNlYXNlZCBhbmQgaGVhbHRoeSBTb3V0aGVybiBHcmVlbiBTdGluayBCdWdzIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgojIExvYWQgbGlicmFyaWVzIApgYGB7cn0KbGlicmFyeShjb21wb3NpdGlvbnMpCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShyZXNoYXBlMikKbGlicmFyeSh0aWJibGUpCmBgYAoKCiMgTG9hZCBtaWNyb2Jpb21lIE9UVSB0YWJsZSBvZiB0aGUgVjQgcmVnaW9uIG9mIHRoZSBTU1UgclJOQSBzZXF1ZW5jZXMgdXNpbmcgNTE1RiBhbmQgODA2UiBwcmltZXJzCmBgYHtyfQpwYXRoPSIwNDE5MThCRWlsbGN1czUxNUYtcHIuZmFzdGEub3R1cy5mYS5PVFUuY2xlYW4udHh0IgpkYXRhIDwtIHJlYWQudGFibGUocGF0aCwgaGVhZGVyPVQsIHNlcD0iXHQiKQpkYXRhMiA8LWRhdGFbLDY6MTNdCgpgYGAKCgojQ3JlYXRlIGEgY291bnQgY29tcG9zaXRpb25hbCBkYXRhc2V0IGFuZCBwZXJmb3JtIGEgY2xyIHRyYW5zZm9ybWF0aW9uCmBgYHtyfQpkYyA9IGNjb21wKHQoZGF0YTIpKQpjb21wID0gY2xyKGRjKQpuYW1lcyhjb21wKTwtZGF0YVssMV0KYGBgCgoKIyBGb3JtYXQgdGhlIGRhdGEgZm9yIHBsb3R0aW5nCmBgYHtyfQpjb21wZGY8LWFzLmRhdGEuZnJhbWUoY29tcCkKY29tcGRmJHRpc3N1ZTwtYygiRmF0IEJvZHkiLCJPdmFyeSIsIlNwZXJtYXRoZWNhIiwiRWdnIiwiRmF0IEJvZHkiLCJPdmFyeSIsIlNwZXJtYXRoZWNhIiwiRWdnIikKY29tcGRmJHNwb3R0ZWQ8LWMoVFJVRSxUUlVFLFRSVUUsVFJVRSxGQUxTRSxGQUxTRSxGQUxTRSxGQUxTRSkKbG9uZ2NvbXA8LSBtZWx0KGNvbXBkZiwgdmFsdWUubmFtZT0iY2xyIikKYGBgCgpgYGB7cn0KZ2dwbG90KGxvbmdjb21wW2xvbmdjb21wJHZhcmlhYmxlPT0iT1RVXzYiLF0sIGFlcyh4PXRpc3N1ZSwgeT1jbHIsIGZpbGw9c3BvdHRlZCkpICsgZ2VvbV9iYXIoc3RhdD0iaWRlbnRpdHkiLCBwb3NpdGlvbj0iZG9kZ2UiKSArIGdndGl0bGUoIlByZXNlbmNlIG9mIE5vc2VtYSBtYWRkb3hpIE9UVSBpbiBOZXphcmEgdmlyaWR1bGEiKSArICAgICB5bGFiKCJDZW50ZXJlZCBMb2cgUmF0aW8iKSArIHhsYWIoIlRpc3N1ZSIpCmBgYAoKCmBgYHtyfQpnZ3Bsb3QoZGF0YSA9IGxvbmdjb21wW2xvbmdjb21wJHZhcmlhYmxlPT0iT1RVXzYiLF0sIGFlcyh4ID0gc3BvdHRlZCwgeSA9IGNsciwgZ3JvdXAgPSB0aXNzdWUpKSArIGdlb21fYm94cGxvdCh3aWR0aD0wLjMsIGFlcyhncm91cD1zcG90dGVkKSwgZmlsbD0nI0E0QTRBNCcpICsKICBnZW9tX2xpbmUoYWVzKGNvbG9yID0gdGlzc3VlKSwgc2l6ZSA9IDEpICsKICBnZW9tX3BvaW50KGFlcyhjb2xvciA9IHRpc3N1ZSksIHNpemUgPSAyKSArCiAgIHlsYWIoIkNlbnRlcmVkIExvZyBSYXRpbyIpICsgeGxhYigiU3BvdHRlZCIpICsgZ2d0aXRsZSgiUHJlc2VuY2Ugb2YgTm9zZW1hIG1hZGRveGkgT1RVIGluIE5lemFyYSB2aXJpZHVsYSIpICsKICAgZ3VpZGVzKGNvbG9yPWd1aWRlX2xlZ2VuZCgiVGlzc3VlIikpCmBgYAojIEV4YW1pbmUgdGhlIENMUiB2YWx1ZXMKCmBgYHtyfQpsb25nY29tcFtsb25nY29tcCR2YXJpYWJsZT09Ik9UVV82IixdCmBgYAojIEV4YW1pbmUgdGhlIHJhdyBjb3VudHMKYGBge3J9CnQoZGF0YVs2LF0pCgpgYGAKCiMgRXhwb3J0IHRoZSBkYXRhCmBgYHtyfQp0ZW1wZGYgPC1hcy5kYXRhLmZyYW1lKHQoY29tcGRmWywxOjM5Ml0pKQp0ZW1wZGYkdGF4YSA8LWRhdGEkVGF4b25vbXkKd3JpdGUudGFibGUodGVtcGRmLCBmaWxlPSJjbHJPVFUudHh0Iiwgc2VwPSJcdCIpCmBgYAoKCgo=