Output R
plot_ly(data=df_rankings2,x=~logGDP,y=~fifaRanking,type='scatter',mode='markers') %>%
add_trace(text=~nombrePais,
color=~catColor_GDP,
marker = list(size = 10)
) %>%
add_trace(y=~prediccion,mode='lines') %>%
add_text(x=28,y=200,text='<b>Corr= -0.6</b>',
textfont = list(color = '#000000', size = 18))
Codigo Python:
from selenium import webdriver #check
from selenium.webdriver.common.by import By #check
from selenium.webdriver.support.ui import WebDriverWait #check
from selenium.webdriver.support import expected_conditions as EC #check
from selenium.webdriver.common.keys import Keys #check
import os
import wget
import time
#jalando info de Fifa Ranking
chrome_options = webdriver.ChromeOptions()
prefs = {"profile.default_content_setting_values.notifications" : 2}
chrome_options.add_experimental_option("prefs",prefs)
chrome_options.add_argument('--no-sandbox')
#specify the path to chromedriver.exe (download and save on your computer)
driver = webdriver.Chrome('D:\Downloads_D\chromedriver_win32\chromedriver.exe', chrome_options= chrome_options)
#open the webpage
driver.get("https://www.fifa.com/fifa-world-ranking/men?dateId=id13407")
time.sleep(5)
button = WebDriverWait(driver, 2).until(EC.element_to_be_clickable((By.CSS_SELECTOR, "#onetrust-accept-btn-handler"))).click()
time.sleep(5)
nombrePais=[]
elRanking=[]
for j in range(5):
todasLasRows=driver.find_elements_by_class_name("fc-ranking-item-full_rankingTableFullRow__1nbp7")
for i in todasLasRows:
#paises
estePais=i.find_elements_by_css_selector("td")[2].find_elements_by_css_selector("span")[0].text
nombrePais.append(estePais)
esteRank=i.find_elements_by_css_selector("td")[0].text
elRanking.append(esteRank)
#ir a siguiente pagina
if j<= 3:
driver.find_elements_by_css_selector(".fc-pagination_iconColor__3TNop")[1].click()
time.sleep(5)
import pandas as pd
df_Fifa=pd.DataFrame(nombrePais).reset_index()
### Haciendo lo mismo para el PIB
#specify the path to chromedriver.exe (download and save on your computer)
driver = webdriver.Chrome('D:\Downloads_D\chromedriver_win32\chromedriver.exe', chrome_options= chrome_options)
#open the webpage
driver.get("https://www.worldometers.info/gdp/gdp-by-country/")
time.sleep(5)
driver.find_elements_by_class_name("cc-dismiss")[0].click()
time.sleep(5)
filas = driver.find_elements_by_css_selector("tbody")[0].find_elements_by_css_selector("tr")
vectorDiccionarios = []
for i in filas:
columnas = i.find_elements_by_css_selector("td")
elDiccionario = {
'elRanking': columnas[0].text,
'nombrePais': columnas[1].text,
'GPD': columnas[2].text,
'GDPgrowth': columnas[4].text,
'Population': columnas[5].text,
'GDPcapita': columnas[6].text,
'shareWorldGDP': columnas[7].text
}
vectorDiccionarios.append(elDiccionario)
### Guardando DF
df_gdp=pd.DataFrame(vectorDiccionarios)
df_gdp.to_excel("gdpMundia.xlsx")
df_Fifa.to_excel("fifaRank.xlsx")