Caliper1<-c(0.265,0.265,0.266,0.267,0.267,0.265,0.267,0.267,0.265,0.268,0.268,0.265)
Caliper2<-c(0.264,0.265,0.264,0.266,0.267,0.268,0.264,0.265,0.265,0.267,0.268,0.269)
cor(Caliper1,Caliper2)
## [1] 0.1276307
summary(Caliper1)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.2650 0.2650 0.2665 0.2662 0.2670 0.2680
summary(Caliper2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.2640 0.2647 0.2655 0.2660 0.2672 0.2690
t.test(Caliper1,Caliper2)
##
## Welch Two Sample t-test
##
## data: Caliper1 and Caliper2
## t = 0.40519, df = 19.559, p-value = 0.6897
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.001038888 0.001538888
## sample estimates:
## mean of x mean of y
## 0.26625 0.26600
Karlsruhe_Method<-c(1.186,1.151,1.322,1.339,1.200,1.402,1.365,1.537,1.559)
Lehigh_Method<-c(1.061,0.992,1.063,1.062,1.065,1.178,1.037,1.086,1.052)
cor(Karlsruhe_Method,Lehigh_Method)
## [1] 0.3821669
summary(Karlsruhe_Method)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.151 1.200 1.339 1.340 1.402 1.559
summary(Lehigh_Method)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.992 1.052 1.062 1.066 1.065 1.178
qqnorm(Karlsruhe_Method,main = "Normal Probability plot for Karlsruhe Method")
qqline(Karlsruhe_Method)
qqnorm(Lehigh_Method,main = "Normal Probability plot for Lehigh Method")
qqline(Lehigh_Method)
#### We can see that both are normally distributed
difference<-Karlsruhe_Method-Lehigh_Method
qqnorm(difference,main = "Normal Probability plot for difference")
qqline(difference)
t.test(Karlsruhe_Method,Lehigh_Method,paired = TRUE)
##
## Paired t-test
##
## data: Karlsruhe_Method and Lehigh_Method
## t = 6.0819, df = 8, p-value = 0.0002953
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.1700423 0.3777355
## sample estimates:
## mean of the differences
## 0.2738889
temp95<-c(11.176,7.089,8.097,11.739,11.291,10.759,6.467,8.315)
temp100<-c(5.263,6.748,7.461,7.015,8.133,7.418,3.772,8.963)
qqnorm(temp95)
qqline(temp95)
qqnorm(temp100)
qqline(temp100)
a<-sd(temp95)
b<-sd(temp100)
z<-sqrt((a^2+b^2)/2)
power.t.test(n=8,delta = 2.5,sd=1.884034,sig.level = 0.05,power = NULL,alternative = c("one.sided"))
##
## Two-sample t test power calculation
##
## n = 8
## delta = 2.5
## sd = 1.884034
## sig.level = 0.05
## power = 0.809887
## alternative = one.sided
##
## NOTE: n is number in *each* group
UO125<-c(2.7,4.6,2.6,3.0,3.2,3.8)
UO200<-c(4.6,3.4,2.9,3.5,4.1,5.1)
qqnorm(UO125)
qqline(UO125)
qqnorm(UO200)
qqline(UO200)
wilcox.test(UO125,UO200)
## Warning in wilcox.test.default(UO125, UO200): cannot compute exact p-value with
## ties
##
## Wilcoxon rank sum test with continuity correction
##
## data: UO125 and UO200
## W = 9.5, p-value = 0.1994
## alternative hypothesis: true location shift is not equal to 0