cA<-c(0.265,0.265,0.266,0.267,0.267,0.265,0.267,0.267,0.265,0.268,0.268,0.265)
cB<-c(0.264,0.265,0.264,0.266,0.267,0.268,0.264,0.265,0.265,0.267,0.268,0.269)
cor(cA,cB)
## [1] 0.1276307
sd(cA)
## [1] 0.001215431
sd(cB)
## [1] 0.001758098
boxplot(cA,cB)
qqnorm(cA)
qqline(cA)
qqnorm(cB)
qqline(cB)
wilcox.test(cA,cB)
## Warning in wilcox.test.default(cA, cB): cannot compute exact p-value with ties
##
## Wilcoxon rank sum test with continuity correction
##
## data: cA and cB
## W = 81, p-value = 0.6131
## alternative hypothesis: true location shift is not equal to 0
t.test(cA,cB)
##
## Welch Two Sample t-test
##
## data: cA and cB
## t = 0.40519, df = 19.559, p-value = 0.6897
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.001038888 0.001538888
## sample estimates:
## mean of x mean of y
## 0.26625 0.26600
kmethod<-c(1.186,1.151,1.322,1.339,1.200,1.402,1.365,1.537,1.559)
lmethod<-c(1.061,0.992,1.063,1.062,1.065,1.178,1.037,1.086,1.052)
cor(kmethod,lmethod)
## [1] 0.3821669
qqnorm(kmethod)
qqnorm(lmethod)
boxplot(kmethod,lmethod)
wilcox.test(kmethod,lmethod)
##
## Wilcoxon rank sum exact test
##
## data: kmethod and lmethod
## W = 80, p-value = 8.227e-05
## alternative hypothesis: true location shift is not equal to 0
t.test(kmethod,lmethod,paired = TRUE)
##
## Paired t-test
##
## data: kmethod and lmethod
## t = 6.0819, df = 8, p-value = 0.0002953
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.1700423 0.3777355
## sample estimates:
## mean of the differences
## 0.2738889
t.test(kmethod,lmethod)
##
## Welch Two Sample t-test
##
## data: kmethod and lmethod
## t = 5.3302, df = 9.8059, p-value = 0.0003557
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.1590886 0.3886892
## sample estimates:
## mean of x mean of y
## 1.340111 1.066222
qqnorm(kmethod)
qqnorm(lmethod)
d<-kmethod-lmethod
qqnorm(d)
thickness1<-c(5.263,6.748,7.461,7.015,8.133,7.418,3.772,8.963)
thickness2<-c(11.176,7.089,8.097,11.739,11.291,10.759,6.467,8.315)
A1<-sd(thickness1)
A2<-sd(thickness2)
A3<-mean(A1,A2)
thickness1<-c(5.263,6.748,7.461,7.015,8.133,7.418,3.772,8.963)
thickness2<-c(11.176,7.089,8.097,11.739,11.291,10.759,6.467,8.315)
cor(thickness1,thickness2)
## [1] 0.2878289
qqnorm(thickness1)
qqnorm(thickness2)
boxplot(thickness1,thickness2)
power.t.test(n=8,delta = 2.5,sd=1.64,sig.level = 0.05,alternative = "two.sided")
##
## Two-sample t test power calculation
##
## n = 8
## delta = 2.5
## sd = 1.64
## sig.level = 0.05
## power = 0.8090705
## alternative = two.sided
##
## NOTE: n is number in *each* group
Flow1<-c(2.7,4.6,2.6,3.0,3.2,3.8)
Flow2<-c(4.6,3.4,2.9,3.5,4.1,5.1)
cor(Flow1,Flow2)
## [1] 0.104653
var(Flow1)
## [1] 0.5776667
var(Flow2)
## [1] 0.6746667
wilcox.test(Flow1,Flow2)
## Warning in wilcox.test.default(Flow1, Flow2): cannot compute exact p-value with
## ties
##
## Wilcoxon rank sum test with continuity correction
##
## data: Flow1 and Flow2
## W = 9.5, p-value = 0.1994
## alternative hypothesis: true location shift is not equal to 0
#cor:0.10 ### Null Hypothesis: mu1-mu2 = 0 ### Alternate Hypothesis: mu1-mu2 != 0 ### The p-value = 0.1994 and which is > aplha=0.05 and so that failed to reject the null hypothesis. ### So, the conclusion that the C2F6 flow rate does not affect average of etching uniformity.
# Question 2.32
cA<-c(0.265,0.265,0.266,0.267,0.267,0.265,0.267,0.267,0.265,0.268,0.268,0.265)
cB<-c(0.264,0.265,0.264,0.266,0.267,0.268,0.264,0.265,0.265,0.267,0.268,0.269)
cor(cA,cB)
sd(cA)
sd(cB)
boxplot(cA,cB)
qqnorm(cA)
qqline(cA)
qqnorm(cB)
qqline(cB)
wilcox.test(cA,cB)
t.test(cA,cB)
# Question 2.34
kmethod<-c(1.186,1.151,1.322,1.339,1.200,1.402,1.365,1.537,1.559)
lmethod<-c(1.061,0.992,1.063,1.062,1.065,1.178,1.037,1.086,1.052)
cor(kmethod,lmethod)
qqnorm(kmethod)
qqnorm(lmethod)
boxplot(kmethod,lmethod)
wilcox.test(kmethod,lmethod)
t.test(kmethod,lmethod,paired = TRUE)
t.test(kmethod,lmethod)
qqnorm(kmethod)
qqnorm(lmethod)
d<-kmethod-lmethod
qqnorm(d)
# Question 2.29
thickness1<-c(5.263,6.748,7.461,7.015,8.133,7.418,3.772,8.963)
thickness2<-c(11.176,7.089,8.097,11.739,11.291,10.759,6.467,8.315)
A1<-sd(thickness1)
A2<-sd(thickness2)
A3<-mean(A1,A2)
thickness1<-c(5.263,6.748,7.461,7.015,8.133,7.418,3.772,8.963)
thickness2<-c(11.176,7.089,8.097,11.739,11.291,10.759,6.467,8.315)
cor(thickness1,thickness2)
qqnorm(thickness1)
qqnorm(thickness2)
boxplot(thickness1,thickness2)
power.t.test(n=8,delta = 2.5,sd=1.64,sig.level = 0.05,alternative = "two.sided")
## question 2.27
Flow1<-c(2.7,4.6,2.6,3.0,3.2,3.8)
Flow2<-c(4.6,3.4,2.9,3.5,4.1,5.1)
cor(A1,A2)
var(A1)
var(A2)
wilcox.test(A1,A2)
COMMENTS
##cor = 0.12 ## Null Hypotheis: H0 : mu1 - mu2 = 0 ## Alternate Hypothesis:Ha: mu1 - mu2 != 0 ## p-value: 0.6131 ## 95% Confidence Interval : -0.0010 to 0.0015 ## the stadard deivaition for Ca,Cb=0.001215431, 0.001758098