Greenhouse Gas Emissions - How Does Your Country Compare?

Introduction

I took a look at greenhouse gas emissions over the past few decades using data from the World Bank. I was interested to see specifically how the greenhouse gas emissions (thousand metric tons of CO2) in the United States compares with other countries. The data I look at is from 1960 - 2018. According to the World Bank: “Total greenhouse gas emissions in kt of CO2 equivalent are composed of CO2 totals excluding short-cycle biomass burning (such as agricultural waste burning and savanna burning) but including other biomass burning (such as forest fires, post-burn decay, peat fires and decay of drained peatlands), all anthropogenic CH4 sources, N2O sources and F-gases (HFCs, PFCs and SF6).”

Analysis

# Import the data 
ghg_emissions <- read_csv(file = 'total_greenhouse_gas_emissions.csv')
## Rows: 271 Columns: 18
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (18): Series Name, Series Code, Country Name, Country Code, 1960 [YR1960...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# Rename the columns 
names(ghg_emissions) <- c("Series Name","Series Code","Country Name", "Country Code", "1960", "1970","1980" , "1990", "2000", "2010", "2011", "2012", "2013", "2014", "2015", "2016", "2017", "2018")

# Tidy the data
tidy_ghg_emissions <- 
ghg_emissions %>%
gather('1960': '2018', key="year", 
       value="ghg_emissions")

tidy_ghg_emissions$ghg_emissions <- as.numeric(tidy_ghg_emissions$ghg_emissions)
tidy_ghg_emissions <- na.omit(tidy_ghg_emissions)

# View the data 
print(tidy_ghg_emissions)
## # A tibble: 3,107 × 6
##    `Series Name` `Series Code` `Country Name` `Country Code` year  ghg_emissions
##    <chr>         <chr>         <chr>          <chr>          <chr>         <dbl>
##  1 Total greenh… EN.ATM.GHGT.… Afghanistan    AFG            1970        14307. 
##  2 Total greenh… EN.ATM.GHGT.… Albania        ALB            1970         6961. 
##  3 Total greenh… EN.ATM.GHGT.… Algeria        DZA            1970        34604. 
##  4 Total greenh… EN.ATM.GHGT.… American Samoa ASM            1970           13.1
##  5 Total greenh… EN.ATM.GHGT.… Angola         AGO            1970        60649. 
##  6 Total greenh… EN.ATM.GHGT.… Argentina      ARG            1970       221957. 
##  7 Total greenh… EN.ATM.GHGT.… Armenia        ARM            1970         6246. 
##  8 Total greenh… EN.ATM.GHGT.… Aruba          ABW            1970           42.3
##  9 Total greenh… EN.ATM.GHGT.… Australia      AUS            1970       319037. 
## 10 Total greenh… EN.ATM.GHGT.… Austria        AUT            1970        68415. 
## # … with 3,097 more rows
# Use dplyr's summarize, count, and group_by functions 

# max and and min greenhouse gas emissions (thousand metric tons of CO2) by year
group_ghg_emissions_year <- tidy_ghg_emissions %>%
  group_by(year) %>%
  summarise(max_ghg_emissions=max(ghg_emissions), min_ghg_emissions=min(ghg_emissions))

print(group_ghg_emissions_year)
## # A tibble: 13 × 3
##    year  max_ghg_emissions min_ghg_emissions
##    <chr>             <dbl>             <dbl>
##  1 1970          27057172.              1.47
##  2 1980          32794096.              1.55
##  3 1990          29848570              20   
##  4 2000          32781530              20   
##  5 2010          41817500              20   
##  6 2011          43022060              20   
##  7 2012          43582450              20   
##  8 2013          44233530              20   
##  9 2014          44438190              20   
## 10 2015          44423270              20   
## 11 2016          44550150              30   
## 12 2017          45117640              30   
## 13 2018          45873850              30
# mean greenhouse gas emissions (thousand metric tons of CO2) by country
group_ghg_emissions_country <- tidy_ghg_emissions %>%
  group_by(`Country Name`) %>%
  summarise(mean_ghg_emissions=round(mean(ghg_emissions),2), count_of_emissions_reported=n())

print(group_ghg_emissions_country)
## # A tibble: 254 × 3
##    `Country Name`              mean_ghg_emissions count_of_emissions_reported
##    <chr>                                    <dbl>                       <int>
##  1 Afghanistan                            59639.                           13
##  2 Africa Eastern and Southern          1481550.                           13
##  3 Africa Western and Central            729676.                           13
##  4 Albania                                 9633.                           13
##  5 Algeria                               164144.                           13
##  6 American Samoa                            14.3                           2
##  7 Andorra                                  579.                           11
##  8 Angola                                 75513.                           13
##  9 Antigua and Barbuda                      951.                           12
## 10 Arab World                           1933687.                           13
## # … with 244 more rows
# create subset of 5 countries: US, India, China, Sweden, Russia 
subset_ghg <- tidy_ghg_emissions %>% 
  filter(tidy_ghg_emissions$`Country Code` %in% c("USA", "IND", "CHN", "SWE", "RUS")) 

# Use ggplot2's functions to visualize insights. 
# Plot Greenhouse Gas Emissions
subset_ghg %>%
  ggplot( aes(x=year, y=ghg_emissions, group=`Country Code`, color=`Country Code`)) + geom_line() +
  labs(y = 'Greenhouse Gas Emissions (thousand metric tons of CO2)') +
  ggtitle(paste('Greenhouse Gas Emission Comparison (US, India, China, Sweden, Russia)'))

Conclusion

It is hard to come to any conclusions without knowing how the population compares in the countries all the way from 1960 - 2018. However, overall the US greenhouse gas emissions in thousand metric tons of CO2 is significantly higher than Sweden, Russia, and Russia. China greenhouse gas emissions are significantly higher than the emissions for the US. It is also interesting to note the sharp increase around 2000 in China while at that same time there appears to be a decrease for greenhouse gas emissions in the US.