Since there are a lot of countries in this dataset, the legend takes up too much space.
## # A tibble: 58 x 5
## # Groups: Year [58]
## Country Year GDP Population GDPPerCap
## <fct> <dbl> <dbl> <dbl> <dbl>
## 1 United States 1960 5.43e11 180671000 3007.
## 2 United States 1961 5.63e11 183691000 3067.
## 3 United States 1962 6.05e11 186538000 3244.
## 4 United States 1963 6.39e11 189242000 3375.
## 5 United States 1964 6.86e11 191889000 3574.
## 6 Kuwait 1965 2.10e 9 473554 4429.
## 7 Kuwait 1966 2.39e 9 524856 4556.
## 8 United States 1967 8.62e11 198712000 4336.
## 9 United States 1968 9.43e11 200706000 4696.
## 10 United States 1969 1.02e12 202677000 5032.
## # ... with 48 more rows
The above dataframe shows which country had the highest per capita GDP for each year in this time series. There seem to be 6 countries that have shared the top spot amongst themselves during this period from 1960 to 2017.
The plot above shows the 6 countries that have had the highest per capita GDP from 1960 to 2017.
This is another plot that shows all the countries for each year in the data.
#save(global_economy, file="global_economy.txt")
#write.csv(global_economy,file ="global_economy.csv")
The US GDP shows an increasing trend for the past50+ years except for a dip during the 2008-2009 period as a result of the Great Financial Crisis.
This time-series above shows cyclicality as well as seasonality.
The electricity demand time series shows seasonality.
The Australian gas production time series shows an increasing trend as well as seasonality. The variance seems to increase based on the level of the time series.
Transforming this time series by taking its log seems to reduce the variance and make it more constant.
Applying a Box-Cox transformation to this time series achieves a similar result to the log transformation i.e. it makes the variance more constant. The optimal lambda parameter is derived to be 0.12.
Lambda = 0.39 seems to be the best choice for this data.
Lambda = -0.04 seems to be the optimal choice for this time series.
Lambda = 0.93 seems to be the best choice for this series.
Lambda = 2 seems to be the best choice for this series.
Lambda = -0.23 seems to be the best choice for this series.
The Australian gas production time series shows an increasing trend as well as quarterly seasonality. The gas production tends to increase in Q2 and then peaks in Q3 before decreasing in Q4. This pattern repeats in each of the years.
The above graph shows the original time series, the trend component, the seasonal component and the random component.
## # A dable: 20 x 7 [1Q]
## # Key: .model [1]
## # : Gas = trend * seasonal * random
## .model Quarter Gas trend seasonal random season_adjust
## <chr> <qtr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 "classical_decomposition(G~ 2005 Q3 221 NA 1.13 NA 196.
## 2 "classical_decomposition(G~ 2005 Q4 180 NA 0.925 NA 195.
## 3 "classical_decomposition(G~ 2006 Q1 171 200. 0.875 0.974 195.
## 4 "classical_decomposition(G~ 2006 Q2 224 204. 1.07 1.02 209.
## 5 "classical_decomposition(G~ 2006 Q3 233 207 1.13 1.00 207.
## 6 "classical_decomposition(G~ 2006 Q4 192 210. 0.925 0.987 208.
## 7 "classical_decomposition(G~ 2007 Q1 187 213 0.875 1.00 214.
## 8 "classical_decomposition(G~ 2007 Q2 234 216. 1.07 1.01 218.
## 9 "classical_decomposition(G~ 2007 Q3 245 219. 1.13 0.996 218.
## 10 "classical_decomposition(G~ 2007 Q4 205 219. 0.925 1.01 222.
## 11 "classical_decomposition(G~ 2008 Q1 194 219. 0.875 1.01 222.
## 12 "classical_decomposition(G~ 2008 Q2 229 219 1.07 0.974 213.
## 13 "classical_decomposition(G~ 2008 Q3 249 219 1.13 1.01 221.
## 14 "classical_decomposition(G~ 2008 Q4 203 220. 0.925 0.996 219.
## 15 "classical_decomposition(G~ 2009 Q1 196 222. 0.875 1.01 224.
## 16 "classical_decomposition(G~ 2009 Q2 238 223. 1.07 0.993 222.
## 17 "classical_decomposition(G~ 2009 Q3 252 225. 1.13 0.994 224.
## 18 "classical_decomposition(G~ 2009 Q4 210 226 0.925 1.00 227.
## 19 "classical_decomposition(G~ 2010 Q1 205 NA 0.875 NA 234.
## 20 "classical_decomposition(G~ 2010 Q2 236 NA 1.07 NA 220.
The table above shows the values of the respective components.
The graph above shows the trend component overlaid on top of the plot of the time series.
Yes, as can be seen from the table of components, the trend component is increasing steadily evey quarter, while the seasonal component is highest for Q3.
The plot above shows the seasonally adjusted data.
## [1] 505
components(mul.decomp.new)
## # A dable: 20 x 7 [1Q]
## # Key: .model [1]
## # : Gas = trend * seasonal * random
## .model Quarter Gas trend seasonal random season_adjust
## <chr> <qtr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 "classical_decomposition(G~ 2005 Q3 221 NA 1.06 NA 209.
## 2 "classical_decomposition(G~ 2005 Q4 180 NA 1.12 NA 160.
## 3 "classical_decomposition(G~ 2006 Q1 171 200. 0.821 1.04 208.
## 4 "classical_decomposition(G~ 2006 Q2 224 204. 0.998 1.10 224.
## 5 "classical_decomposition(G~ 2006 Q3 233 207 1.06 1.06 220.
## 6 "classical_decomposition(G~ 2006 Q4 192 210. 1.12 0.813 171.
## 7 "classical_decomposition(G~ 2007 Q1 187 213 0.821 1.07 228.
## 8 "classical_decomposition(G~ 2007 Q2 234 254. 0.998 0.924 234.
## 9 "classical_decomposition(G~ 2007 Q3 245 294. 1.06 0.789 232.
## 10 "classical_decomposition(G~ 2007 Q4 505 294. 1.12 1.53 449.
## 11 "classical_decomposition(G~ 2008 Q1 194 294. 0.821 0.804 236.
## 12 "classical_decomposition(G~ 2008 Q2 229 256. 0.998 0.894 229.
## 13 "classical_decomposition(G~ 2008 Q3 249 219 1.06 1.08 236.
## 14 "classical_decomposition(G~ 2008 Q4 203 220. 1.12 0.820 181.
## 15 "classical_decomposition(G~ 2009 Q1 196 222. 0.821 1.08 239.
## 16 "classical_decomposition(G~ 2009 Q2 238 223. 0.998 1.07 238.
## 17 "classical_decomposition(G~ 2009 Q3 252 225. 1.06 1.06 238.
## 18 "classical_decomposition(G~ 2009 Q4 210 226 1.12 0.827 187.
## 19 "classical_decomposition(G~ 2010 Q1 205 NA 0.821 NA 250.
## 20 "classical_decomposition(G~ 2010 Q2 236 NA 0.998 NA 236.
The impact of adding 300 to the observation for 2007Q4 is that the seasonal component values change - the seasonal component for Q4 increases, while that for Q1, Q2 and Q3 decreases. The plot for the seasonally-adjusted series shows a big spike for the 2007Q4 value which was modified.
## [1] 205
## [1] 510
## # A dable: 20 x 7 [1Q]
## # Key: .model [1]
## # : Gas = trend * seasonal * random
## .model Quarter Gas trend seasonal random season_adjust
## <chr> <qtr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 "classical_decomposition(G~ 2005 Q3 221 NA 1.03 NA 214.
## 2 "classical_decomposition(G~ 2005 Q4 180 NA 1.09 NA 165.
## 3 "classical_decomposition(G~ 2006 Q1 171 200. 0.857 0.995 199.
## 4 "classical_decomposition(G~ 2006 Q2 224 204. 1.01 1.08 221.
## 5 "classical_decomposition(G~ 2006 Q3 233 207 1.03 1.09 225.
## 6 "classical_decomposition(G~ 2006 Q4 192 210. 1.09 0.835 176.
## 7 "classical_decomposition(G~ 2007 Q1 187 213 0.857 1.02 218.
## 8 "classical_decomposition(G~ 2007 Q2 234 216. 1.01 1.07 231.
## 9 "classical_decomposition(G~ 2007 Q3 245 219. 1.03 1.08 237.
## 10 "classical_decomposition(G~ 2007 Q4 205 219. 1.09 0.856 187.
## 11 "classical_decomposition(G~ 2008 Q1 194 219. 0.857 1.03 226.
## 12 "classical_decomposition(G~ 2008 Q2 229 219 1.01 1.03 226.
## 13 "classical_decomposition(G~ 2008 Q3 249 219 1.03 1.10 241.
## 14 "classical_decomposition(G~ 2008 Q4 203 220. 1.09 0.842 186.
## 15 "classical_decomposition(G~ 2009 Q1 196 222. 0.857 1.03 229.
## 16 "classical_decomposition(G~ 2009 Q2 238 261. 1.01 0.900 235.
## 17 "classical_decomposition(G~ 2009 Q3 252 300. 1.03 0.812 244.
## 18 "classical_decomposition(G~ 2009 Q4 510 301 1.09 1.55 466.
## 19 "classical_decomposition(G~ 2010 Q1 205 NA 0.857 NA 239.
## 20 "classical_decomposition(G~ 2010 Q2 236 NA 1.01 NA 233.
The original plot shows high cyclicality as well as a seasonal component that has changed over the years. The extent of variability also seems to be dependent on the level of the time series.The increased variance during the 2011-12 period has larlgely leaked over into the remainder component.
The decomposition shows an increasing trend cycle over the 1978 to 1995 period. The seasonal component seems to have changed over the years - the pattern in the early part of this period is different from the seasonal pattern in the latter years. This can also be seen in the seasonal plot (figure 3.20) where certain months such as March, July, August, November and December show a high variance over the years. The impact of the 1991/1992 recession is visible primarily in the remainder component, and not in the trend component which implies that the number of periods used in calculating the moving average for the trend is high, which results in over-smoothing.