\[ \rho_s = exp \left[ -8 \left(\frac{\pi \sigma_h \sin{\theta_i}}{\lambda} \right) ^2 \right] \] - \(\sigma_h\) = standar deviasi ketinggian permukaan yang tidak rata
Untuk \(h > h_c\) , berdasarkan penjelasan 2 slide sebelumnya, maka koefisien refleksi harus dikalikan dengan \(\rho_s\)
\[ \Gamma_{kasar} = \Gamma \rho_s \]
| Environment | n |
|---|---|
| Free Space | 2 |
| Urban area cellular radio | 2.7 - 3.5 |
| Shadowed urban area | 3 - 5 |
| In building line-of-sight | 1.6 - 1.8 |
| Obstructed in building | 4 - 6 |
| Obstructed in factories | 2 - 3 |
\[ \overline{PL}_{(dB)} = \overline{PL}(d_0) + 10n \log{ \left( \frac{d}{d_0} \right) } \] Melalui persamaan tersebut tidak dipertimbangkan bahwa kondisi lingkungan sangat berbeda jauh, walaupun jaraknya ( T-R separation ) kurang lebih sama, karena persamaan tersebut hanya dependen terhadap \(d\).
\[ Q(z) = \frac{1}{\sqrt[]{2 \pi}} \int_{z}^{\infty}{exp \left( - \frac{x}{2} \right)} \,dx \] Dengan demikian, probabilitas power suatu sinyal (dB) melebihi / kurang dari suatu nilai tertentu (\(\gamma\)), untuk jarak T-R tertentu (\(d\)) : \[ P_r \left[ P_r (d) > \gamma \right] = Q \left( \frac{\gamma - \overline{P_r}(d)}{\sigma} \right) \] \[ P_r \left[ P_r (d) < \gamma \right] = Q \left( \frac{\overline{P_r}(d)}{\sigma} - \gamma \right) \]
\[ \begin{align} Q(z) &= \frac{1}{\sqrt[]{2 \pi}} \int_{z}^{\infty}{exp \left( - \frac{x}{2} \right)} \,dx &\quad \text{(integral)} \\ Q(z) &= \frac{1}{2} \left[ 1 - erf \left( \frac{z}{\sqrt[]{2}} \right) \right] &\quad \text{(error function)} \end{align} \]
\[ Pr \left[ P_r (d) < \gamma \right] \to Pr \left[ P_r (r) < \gamma \right] \]
\[ U( \gamma ) = \frac{1}{\pi R^2} \int{ Pr \left[ P_r (r) < \gamma \right] } \,dA \] - Kita perlu ingat juga bahwa \(Pr[ P_r (r) < \gamma]\) idem dengan:
\[ Q \left( \frac{\gamma - \overline{P_r}(r)}{\sigma} \right) \]
\[ Pr \left[ P_r (r) < \gamma \right] = \frac{1}{2} - \frac{1}{2}erf \left[ \frac{\gamma - \overline{P_r}(r)}{\sigma \sqrt[]{2}} \right] \]
ekspansi \(\overline{P_r}(r)\) \[ Pr \left[ P_r (r) < \gamma \right] = \frac{1}{2} - \frac{1}{2}erf \left[ \frac{\gamma - \left[ P_t - ( \overline{PL}(d_0) + 10n \log{ (\frac{r}{d_0}}) ) \right] } {\sigma \sqrt[]{2}} \right] \]
Agar model kita dapat memodelkan path loss yang sesuai dengan batasan area yang memiliki layanan usable, maka \(r = R\), sehingga persamaan akan menjadi:
\[ Pr \left[ P_r (r) < \gamma \right] = \frac{1}{2} - \frac{1}{2}erf \left[ \frac{\gamma - \left[ P_t - ( \overline{PL}(d_0) + 10n \log{ (\frac{R}{d_0}}) + 10n \log{ (\frac{r}{R}}) ) \right] } {\sigma \sqrt[]{2}} \right] \]
Model milik Hata merupakan hasil pengembangan dari model milik Okumura yang masih memiliki banyak kekurangan
Persamaan model Okumura:
\[
L_{50}(dB) = L_F + A_{mu}(f,d) - G(h_{te}) - G(h_{re}) - G_{AREA}
\]
\(L_{50}\) = Median dari path loss
\(A_mu\) = Median dari atenuasi free space
\(G(h_{te})\) = Gain antenna dari pemancar
\(G(h_{re})\) = Gain antenna dari penerima
\(G_{AREA}\) = Gain dari lingkungan (berbeda dengan free space)
\[ G(h_{te}) = 20 \log{ \left( \frac{h_{te}}{200} \right) } \quad ; \quad 30m \lt h_{te} \lt 1000m \]
\[ G(h_{re}) = \begin{cases} 10 \log{ \left( \frac{h_{re}}{3} \right) } ,& \text{if} & h_{re} \le 3 m\\ 20 \log{ \left( \frac{h_{re}}{3} \right) } ,& \text{if} & 3m \lt h_{re} \lt 10m \end{cases} \]
Nilai \(\alpha(h_{re})\) Urban Area
\[ \begin{align} \alpha(h_{re}) &= (1.1 \log{f_c} - 0.7) h_{re} - (1.56 \log{f_c} - 0.8) & \text{(Kota kecil)}\\ \alpha(h_{re}) &= \begin{cases} 8.29 ( \log{1.54 h_{re}})^2 - 1.1 &\text{for} & f_{c} \le 300 MHz \\ 3.2 ( \log{11.75 h_{re}})^2 - 4.97 &\text{for} & f_{c} \ge 300 MHz \end{cases} & \text{(Kota Besar)} \end{align} \]
\[ L_{50}(dB) = L_{50}(urban) - 2 \left[ \log{\left( \frac{f_c}{28} \right)} \right]^2 - 5.4 \]
\[ \begin{align} L_{50}(dB) =& \quad L_{50}(urban) - 4.78 ( \log{f_c} )^2 \\ & \quad - 18.33 \log{f_c} - 40.98 \end{align} \]
| Bahan | Loss | Frekuensi |
|---|---|---|
| All metal | 26 dB | 815 MHz |
| Aluminium siding | 20.4 dB | 815 MHz |
| Foil insulation | 3.9 dB | 815 MHz |
| Concrete block wall | 13 dB | 1300 MHz |
| Loss from 1 floor | 20-30 dB | 1300 MHz |
| Loss from 1 floor & 1 wall | 40-50 dB | 1300 MHz |
| Metal catwalk / staircase | 5 dB | 1300 MHz |
| Ceiling duct | 1-8 dB | 1300 MHz |
f = 915 MHz
| JumlahLantai | FAF.dB | StdDev.dB | Num.Location |
|---|---|---|---|
| 1 | 13.2 | 9.2 | 16 |
| 2 | 18.1 | 8.0 | 10 |
| 3 | 24.0 | 5.6 | 10 |
| 4 | 27.0 | 6.8 | 10 |
f = 1900 MHz
| JumlahLantai | FAF.dB | StdDev.dB | Num.Location |
|---|---|---|---|
| 1 | 26.2 | 10.5 | 21 |
| 2 | 33.4 | 9.9 | 21 |
| 3 | 35.2 | 5.9 | 20 |
| 4 | 38.4 | 3.4 | 20 |
| Bangunan | Frequency.MHz | n | StdDev.dB |
|---|---|---|---|
| Retail store | 914 | 2.2 | 8.7 |
| Grocery store | 914 | 1.8 | 5.2 |
| Office, hard partition | 1500 | 3.0 | 7.0 |
| Office, soft partition | 900 | 2.4 | 9.6 |
| Office, soft partition | 1900 | 2.6 | 14.1 |