DATA 607 Project1

Let’s load the required libraries in R for data analysis
library(dplyr)
library(downloader)
library(stringr)
library(htmlTable)
library(tidyverse)
library(janitor)

library(sqldf)
library(RODBC)
library(DBI)
library(odbc)


##### Download and read the txt file to a dataframe object ##### Filter the empty rows

## [1] "C:/MSDS/Fall_2021/DATA_607/Week4"


Parse the Game Round information to isolate the opponent Player_Nums for further analysis
round1_data <- str_extract_all(new_data_rows$Round_1,boundary("word"), simplify = T)
round2_data <- str_extract_all(new_data_rows$Round_2,boundary("word"), simplify = T)
round3_data <- str_extract_all(new_data_rows$Round_3,boundary("word"), simplify = T)
round4_data <- str_extract_all(new_data_rows$Round_4,boundary("word"), simplify = T)
round5_data <- str_extract_all(new_data_rows$Round_5,boundary("word"), simplify = T)
round6_data <- str_extract_all(new_data_rows$Round_6,boundary("word"), simplify = T)
round7_data <- str_extract_all(new_data_rows$Round_7,boundary("word"), simplify = T)

new_data_rows <- cbind(new_data_rows, Round1_Opponent = round1_data[,2], Round2_Opponent = round2_data[,2], 
        Round3_Opponent = round3_data[,2], Round4_Opponent = round4_data[,2], Round5_Opponent = round5_data[,2],
        Round6_Opponent = round6_data[,2], Round7_Opponent = round7_data[,2])

subset_db_rows <- subset(new_data_rows, select= c(Player_Num, Player_Name, Total_Pts, Player_PreRating, Round1_Opponent,Round2_Opponent,Round3_Opponent,Round4_Opponent,Round5_Opponent,Round6_Opponent,Round7_Opponent))

## Substitute blank Opponent Player_Num to 99999
subset_db_rows[subset_db_rows == ""] <- 99999

db_rows <- subset_db_rows

## Filter the Rating digits, removing the P?? numbers
PreRating <- str_extract_all(subset_db_rows$Player_PreRating, "^[:digit:]+")

PreRating.df <- as.data.frame(t(PreRating))
T_PreRating <- t(PreRating.df)
 
## Add a new column with just Pre_Rating
db_rows$Pre_Rating <- T_PreRating    

## First coerce the data.frame to all-character
db_rows_coerce = data.frame(lapply(db_rows, as.character), stringsAsFactors=FALSE)


Create dataframes to help compute ‘Average Pre Chess Rating of Opponents’
Convert the character value in the dataframe to Integer to help compute the mean
player_opponents.df <- subset(db_rows_coerce, select = c(Player_Num, Pre_Rating, Round1_Opponent, Round2_Opponent, Round3_Opponent, Round4_Opponent, Round5_Opponent, Round6_Opponent, Round7_Opponent) )

data1 <- player_opponents.df

dat <- as.data.frame(sapply(data1, as.numeric)) #<- sapply is here

dat_num <- dat
Loop thru the dataframe to get the Opponent Rating and calculate the Mean_Opponent_Rating
Bypass the byes, forfeit in mean calculation
Combine the dataset with the original dataframe with Player Name and other information
for(i in 1:nrow(dat_num)) {       # for-loop over rows
   count <- 0
   sum <- 0
   j <- 3
   for(j in 3:ncol(dat_num)) {  
      dat_num[i, j] <- dat_num[dat_num[i, j], 2] # Replace Opponent player_num with their Pre_Rating
      if (is.na(dat_num[i,j]) == FALSE) {
        count <- count + 1
        sum <- sum + dat_num[i,j]
      }
   }
   dat_num[i,10] <-   format(round(sum/count, 2), nsmall = 2) 
   dat_num[i,11] <- count
}

## Combine the original dataframe, map with the ratings
combined_df <- cbind(data_rows, dat_num[ ,2], dat_num[ ,10], dat_num[ ,11])              
colnames(combined_df) <- c("Player_Num","Player_Name", "Total_Pts",  "Round_1","Round_2", "Round_3", "Round_4", "Round_5", "Round_6", "Round_7", "Temp","State","All Rate Info", "Pre_Rating","Opponent_Mean_Rating", "Num_Games_Played")

result_df <- subset(combined_df, select= c(Player_Num, Player_Name, State, Total_Pts, Pre_Rating, Opponent_Mean_Rating), row_number=FALSE)
htmlTable(result_df)
Player_Num Player_Name State Total_Pts Pre_Rating Opponent_Mean_Rating
2 1 GARY HUA ON 6.0 1794 1605.29
5 2 DAKSHESH DARURI MI 6.0 1553 1469.29
8 3 ADITYA BAJAJ MI 6.0 1384 1563.57
11 4 PATRICK H SCHILLING MI 5.5 1716 1573.57
14 5 HANSHI ZUO MI 5.5 1655 1500.86
17 6 HANSEN SONG OH 5.0 1686 1518.71
20 7 GARY DEE SWATHELL MI 5.0 1649 1372.14
23 8 EZEKIEL HOUGHTON MI 5.0 1641 1468.43
26 9 STEFANO LEE ON 5.0 1411 1523.14
29 10 ANVIT RAO MI 5.0 1365 1554.14
32 11 CAMERON WILLIAM MC LEMAN MI 4.5 1712 1467.57
35 12 KENNETH J TACK MI 4.5 1663 1506.17
38 13 TORRANCE HENRY JR MI 4.5 1666 1497.86
41 14 BRADLEY SHAW MI 4.5 1610 1515.00
44 15 ZACHARY JAMES HOUGHTON MI 4.5 1220 1483.86
47 16 MIKE NIKITIN MI 4.0 1604 1385.80
50 17 RONALD GRZEGORCZYK MI 4.0 1629 1498.57
53 18 DAVID SUNDEEN MI 4.0 1600 1480.00
56 19 DIPANKAR ROY MI 4.0 1564 1426.29
59 20 JASON ZHENG MI 4.0 1595 1410.86
62 21 DINH DANG BUI ON 4.0 1563 1470.43
65 22 EUGENE L MCCLURE MI 4.0 1555 1300.33
68 23 ALAN BUI ON 4.0 1363 1213.86
71 24 MICHAEL R ALDRICH MI 4.0 1229 1357.00
74 25 LOREN SCHWIEBERT MI 3.5 1745 1363.29
77 26 MAX ZHU ON 3.5 1579 1506.86
80 27 GAURAV GIDWANI MI 3.5 1552 1221.67
83 28 SOFIA ADINA STANESCU-BELLU MI 3.5 1507 1522.14
86 29 CHIEDOZIE OKORIE MI 3.5 1602 1313.50
89 30 GEORGE AVERY JONES ON 3.5 1522 1144.14
92 31 RISHI SHETTY MI 3.5 1494 1259.86
95 32 JOSHUA PHILIP MATHEWS ON 3.5 1441 1378.71
98 33 JADE GE MI 3.5 1449 1276.86
101 34 MICHAEL JEFFERY THOMAS MI 3.5 1399 1375.29
104 35 JOSHUA DAVID LEE MI 3.5 1438 1149.71
107 36 SIDDHARTH JHA MI 3.5 1355 1388.17
110 37 AMIYATOSH PWNANANDAM MI 3.5 980 1384.80
113 38 BRIAN LIU MI 3.0 1423 1539.17
116 39 JOEL R HENDON MI 3.0 1436 1429.57
119 40 FOREST ZHANG MI 3.0 1348 1390.57
122 41 KYLE WILLIAM MURPHY MI 3.0 1403 1248.50
125 42 JARED GE MI 3.0 1332 1149.86
128 43 ROBERT GLEN VASEY MI 3.0 1283 1106.57
131 44 JUSTIN D SCHILLING MI 3.0 1199 1327.00
134 45 DEREK YAN MI 3.0 1242 1152.00
137 46 JACOB ALEXANDER LAVALLEY MI 3.0 377 1357.71
140 47 ERIC WRIGHT MI 2.5 1362 1392.00
143 48 DANIEL KHAIN MI 2.5 1382 1355.80
146 49 MICHAEL J MARTIN MI 2.5 1291 1285.80
149 50 SHIVAM JHA MI 2.5 1056 1296.00
152 51 TEJAS AYYAGARI MI 2.5 1011 1356.14
155 52 ETHAN GUO MI 2.5 935 1494.57
158 53 JOSE C YBARRA MI 2.0 1393 1345.33
161 54 LARRY HODGE MI 2.0 1270 1206.17
164 55 ALEX KONG MI 2.0 1186 1406.00
167 56 MARISA RICCI MI 2.0 1153 1414.40
170 57 MICHAEL LU MI 2.0 1092 1363.00
173 58 VIRAJ MOHILE MI 2.0 917 1391.00
176 59 SEAN M MC CORMICK MI 2.0 853 1319.00
179 60 JULIA SHEN MI 1.5 967 1330.20
182 61 JEZZEL FARKAS ON 1.5 955 1327.29
185 62 ASHWIN BALAJI MI 1.0 1530 1186.00
188 63 THOMAS JOSEPH HOSMER MI 1.0 1175 1350.20
191 64 BEN LI MI 1.0 1163 1263.00
Create Player dataset who played all the scheduled games
Create Player dataset who had atleast one unplayed game
all_games_played_df <- subset(combined_df, select= c(Player_Num, Player_Name, Total_Pts, Pre_Rating, Opponent_Mean_Rating,Num_Games_Played), row_number=FALSE)

## Players who played 7 Rounds
max_games_played_df <- filter(all_games_played_df, all_games_played_df$Num_Games_Played == 7)
htmlTable(max_games_played_df)
Player_Num Player_Name Total_Pts Pre_Rating Opponent_Mean_Rating Num_Games_Played
1 1 GARY HUA 6.0 1794 1605.29 7
2 2 DAKSHESH DARURI 6.0 1553 1469.29 7
3 3 ADITYA BAJAJ 6.0 1384 1563.57 7
4 4 PATRICK H SCHILLING 5.5 1716 1573.57 7
5 5 HANSHI ZUO 5.5 1655 1500.86 7
6 6 HANSEN SONG 5.0 1686 1518.71 7
7 7 GARY DEE SWATHELL 5.0 1649 1372.14 7
8 8 EZEKIEL HOUGHTON 5.0 1641 1468.43 7
9 9 STEFANO LEE 5.0 1411 1523.14 7
10 10 ANVIT RAO 5.0 1365 1554.14 7
11 11 CAMERON WILLIAM MC LEMAN 4.5 1712 1467.57 7
12 13 TORRANCE HENRY JR 4.5 1666 1497.86 7
13 14 BRADLEY SHAW 4.5 1610 1515.00 7
14 15 ZACHARY JAMES HOUGHTON 4.5 1220 1483.86 7
15 17 RONALD GRZEGORCZYK 4.0 1629 1498.57 7
16 18 DAVID SUNDEEN 4.0 1600 1480.00 7
17 19 DIPANKAR ROY 4.0 1564 1426.29 7
18 20 JASON ZHENG 4.0 1595 1410.86 7
19 21 DINH DANG BUI 4.0 1563 1470.43 7
20 23 ALAN BUI 4.0 1363 1213.86 7
21 24 MICHAEL R ALDRICH 4.0 1229 1357.00 7
22 25 LOREN SCHWIEBERT 3.5 1745 1363.29 7
23 26 MAX ZHU 3.5 1579 1506.86 7
24 28 SOFIA ADINA STANESCU-BELLU 3.5 1507 1522.14 7
25 30 GEORGE AVERY JONES 3.5 1522 1144.14 7
26 31 RISHI SHETTY 3.5 1494 1259.86 7
27 32 JOSHUA PHILIP MATHEWS 3.5 1441 1378.71 7
28 33 JADE GE 3.5 1449 1276.86 7
29 34 MICHAEL JEFFERY THOMAS 3.5 1399 1375.29 7
30 35 JOSHUA DAVID LEE 3.5 1438 1149.71 7
31 39 JOEL R HENDON 3.0 1436 1429.57 7
32 40 FOREST ZHANG 3.0 1348 1390.57 7
33 42 JARED GE 3.0 1332 1149.86 7
34 43 ROBERT GLEN VASEY 3.0 1283 1106.57 7
35 45 DEREK YAN 3.0 1242 1152.00 7
36 46 JACOB ALEXANDER LAVALLEY 3.0 377 1357.71 7
37 47 ERIC WRIGHT 2.5 1362 1392.00 7
38 51 TEJAS AYYAGARI 2.5 1011 1356.14 7
39 52 ETHAN GUO 2.5 935 1494.57 7
40 61 JEZZEL FARKAS 1.5 955 1327.29 7
41 64 BEN LI 1.0 1163 1263.00 7
## Players who had one or more unplayed games 
games_unplayed_df <- filter(all_games_played_df, all_games_played_df$Num_Games_Played < 7)
htmlTable(games_unplayed_df)
Player_Num Player_Name Total_Pts Pre_Rating Opponent_Mean_Rating Num_Games_Played
1 12 KENNETH J TACK 4.5 1663 1506.17 6
2 16 MIKE NIKITIN 4.0 1604 1385.80 5
3 22 EUGENE L MCCLURE 4.0 1555 1300.33 6
4 27 GAURAV GIDWANI 3.5 1552 1221.67 6
5 29 CHIEDOZIE OKORIE 3.5 1602 1313.50 6
6 36 SIDDHARTH JHA 3.5 1355 1388.17 6
7 37 AMIYATOSH PWNANANDAM 3.5 980 1384.80 5
8 38 BRIAN LIU 3.0 1423 1539.17 6
9 41 KYLE WILLIAM MURPHY 3.0 1403 1248.50 4
10 44 JUSTIN D SCHILLING 3.0 1199 1327.00 6
11 48 DANIEL KHAIN 2.5 1382 1355.80 5
12 49 MICHAEL J MARTIN 2.5 1291 1285.80 5
13 50 SHIVAM JHA 2.5 1056 1296.00 6
14 53 JOSE C YBARRA 2.0 1393 1345.33 3
15 54 LARRY HODGE 2.0 1270 1206.17 6
16 55 ALEX KONG 2.0 1186 1406.00 6
17 56 MARISA RICCI 2.0 1153 1414.40 5
18 57 MICHAEL LU 2.0 1092 1363.00 6
19 58 VIRAJ MOHILE 2.0 917 1391.00 6
20 59 SEAN M MC CORMICK 2.0 853 1319.00 6
21 60 JULIA SHEN 1.5 967 1330.20 5
22 62 ASHWIN BALAJI 1.0 1530 1186.00 1
23 63 THOMAS JOSEPH HOSMER 1.0 1175 1350.20 5
Sort the Players by their Pre-Ratings, Points
# Sort by Points and Pre_Ratings
sorted_df <- result_df[order(result_df$Total_Pts, result_df$Pre_Rating, decreasing = TRUE),]

htmlTable(sorted_df, rnames = FALSE)
Player_Num Player_Name State Total_Pts Pre_Rating Opponent_Mean_Rating
1 GARY HUA ON 6.0 1794 1605.29
2 DAKSHESH DARURI MI 6.0 1553 1469.29
3 ADITYA BAJAJ MI 6.0 1384 1563.57
4 PATRICK H SCHILLING MI 5.5 1716 1573.57
5 HANSHI ZUO MI 5.5 1655 1500.86
6 HANSEN SONG OH 5.0 1686 1518.71
7 GARY DEE SWATHELL MI 5.0 1649 1372.14
8 EZEKIEL HOUGHTON MI 5.0 1641 1468.43
9 STEFANO LEE ON 5.0 1411 1523.14
10 ANVIT RAO MI 5.0 1365 1554.14
11 CAMERON WILLIAM MC LEMAN MI 4.5 1712 1467.57
13 TORRANCE HENRY JR MI 4.5 1666 1497.86
12 KENNETH J TACK MI 4.5 1663 1506.17
14 BRADLEY SHAW MI 4.5 1610 1515.00
15 ZACHARY JAMES HOUGHTON MI 4.5 1220 1483.86
17 RONALD GRZEGORCZYK MI 4.0 1629 1498.57
16 MIKE NIKITIN MI 4.0 1604 1385.80
18 DAVID SUNDEEN MI 4.0 1600 1480.00
20 JASON ZHENG MI 4.0 1595 1410.86
19 DIPANKAR ROY MI 4.0 1564 1426.29
21 DINH DANG BUI ON 4.0 1563 1470.43
22 EUGENE L MCCLURE MI 4.0 1555 1300.33
23 ALAN BUI ON 4.0 1363 1213.86
24 MICHAEL R ALDRICH MI 4.0 1229 1357.00
25 LOREN SCHWIEBERT MI 3.5 1745 1363.29
29 CHIEDOZIE OKORIE MI 3.5 1602 1313.50
26 MAX ZHU ON 3.5 1579 1506.86
27 GAURAV GIDWANI MI 3.5 1552 1221.67
30 GEORGE AVERY JONES ON 3.5 1522 1144.14
28 SOFIA ADINA STANESCU-BELLU MI 3.5 1507 1522.14
31 RISHI SHETTY MI 3.5 1494 1259.86
33 JADE GE MI 3.5 1449 1276.86
32 JOSHUA PHILIP MATHEWS ON 3.5 1441 1378.71
35 JOSHUA DAVID LEE MI 3.5 1438 1149.71
34 MICHAEL JEFFERY THOMAS MI 3.5 1399 1375.29
36 SIDDHARTH JHA MI 3.5 1355 1388.17
37 AMIYATOSH PWNANANDAM MI 3.5 980 1384.80
39 JOEL R HENDON MI 3.0 1436 1429.57
38 BRIAN LIU MI 3.0 1423 1539.17
41 KYLE WILLIAM MURPHY MI 3.0 1403 1248.50
40 FOREST ZHANG MI 3.0 1348 1390.57
42 JARED GE MI 3.0 1332 1149.86
43 ROBERT GLEN VASEY MI 3.0 1283 1106.57
45 DEREK YAN MI 3.0 1242 1152.00
44 JUSTIN D SCHILLING MI 3.0 1199 1327.00
46 JACOB ALEXANDER LAVALLEY MI 3.0 377 1357.71
48 DANIEL KHAIN MI 2.5 1382 1355.80
47 ERIC WRIGHT MI 2.5 1362 1392.00
49 MICHAEL J MARTIN MI 2.5 1291 1285.80
50 SHIVAM JHA MI 2.5 1056 1296.00
51 TEJAS AYYAGARI MI 2.5 1011 1356.14
52 ETHAN GUO MI 2.5 935 1494.57
53 JOSE C YBARRA MI 2.0 1393 1345.33
54 LARRY HODGE MI 2.0 1270 1206.17
55 ALEX KONG MI 2.0 1186 1406.00
56 MARISA RICCI MI 2.0 1153 1414.40
57 MICHAEL LU MI 2.0 1092 1363.00
58 VIRAJ MOHILE MI 2.0 917 1391.00
59 SEAN M MC CORMICK MI 2.0 853 1319.00
60 JULIA SHEN MI 1.5 967 1330.20
61 JEZZEL FARKAS ON 1.5 955 1327.29
62 ASHWIN BALAJI MI 1.0 1530 1186.00
63 THOMAS JOSEPH HOSMER MI 1.0 1175 1350.20
64 BEN LI MI 1.0 1163 1263.00

GARY HUA scored the most points relative to his expected result

## Create the .CSV file from the dataframe
getwd() # Path where the file will be downloaded
## [1] "C:/MSDS/Fall_2021/DATA_607/Week4"
write.csv(result_df,"Chess_Project_Result.csv", row.names = FALSE)