Reading data:
F125 <- c(2.7, 4.6, 2.6, 3.0, 3.2, 3.8)
F200 <- c(4.6, 3.4, 2.9, 3.5, 4.1, 5.1)
Since we only have 6 samples for each group. This is too less to tell if the samples are following normal distribution, so we choose to use non-parameteric test. Different flow rate on same etch, so paired data. rmd file has not been corrected, please use this updated one in html.
Null hypothesis \(H_0: \mu_1 = \mu_2\)
Alternative hypothesis \(H_1: \mu_1 \ne \mu_2\)
wilcox.test(F125,F200, paired= TRUE, alternative="two.sided")
##
## Wilcoxon signed rank exact test
##
## data: F125 and F200
## V = 4, p-value = 0.2188
## alternative hypothesis: true location shift is not equal to 0
Since p-value = 0.2188>0.05, we fail to reject the null hypothesis. So, the C2F6 flow rate does not affect average etch uniformity.
————————————————————————————————
Raw codes:
C1 <- c(0.265, 0.265, 0.266, 0.267, 0.267, 0.265, 0.267, 0.267, 0.265, 0.268, 0.268, 0.265)
C2 <- c(0.264, 0.265, 0.264, 0.266, 0.267, 0.268, 0.264, 0.265, 0.265, 0.267, 0.268, 0.269)
C3 <- C1-C2
qqnorm(C3)
t.test(C1,C2,paired = TRUE)
————————————————————————————————
KM <- c(1.186, 1.151, 1.322, 1.339, 1.200, 1.402, 1.365, 1.537, 1.559)
LM <- c(1.061, 0.992, 1.063, 1.062, 1.065, 1.178, 1.037, 1.086, 1.052)
D <- KM-LM
qqnorm(KM, main=“Karlsruhe Method Normal Probability Plot”)
qqnorm(LM, main=“Lehigh Method Normal Probability Plot”)
qqnorm(D, main=“Two Methods difference Normal Probability Plot”)
t.test(KM,LM,paired = TRUE)
————————————————————————————————
datTemp1 <- c(11.176, 7.089, 8.097, 11.739, 11.291, 10.759, 6.467, 8.315)
datTemp2 <- c(5.623, 6.748, 7.461, 7.015, 8.133, 7.418, 3.772, 8.963)
qqnorm(datTemp1)
qqnorm(datTemp2)
library(pwr)
power.t.test(n=8,delta =2.5,sd = sqrt(((8-1)*(sd(datTemp1))^2+(8-1)**(sd(datTemp2))^2)/(8+8-2)), sig.level=0.05,power=NULL,type=“two.sample”, alternative = “two.sided”)
————————————————————————————————
F125 <- c(2.7, 4.6, 2.6, 3.0, 3.2, 3.8)
F200 <- c(4.6, 3.4, 2.9, 3.5, 4.1, 5.1)
wilcox.test(F125,F200, paired= TRUE, alternative=“two.sided”)
————————————————————————————————