Email : clara.evania@student.matanauniversity.ac.id
RPubs : https://rpubs.com/claradellaevania/
Jurusan : Statistika Bisnis
Address : ARA Center, Matana University Tower
Jl. CBD Barat Kav, RT.1, Curug Sangereng, Kelapa Dua, Tangerang, Banten 15810.
Fungsi dengan bahasa pemrograman R dan Python untuk menghitung:
Contoh Soal
Integral Tentu dan Tak Tentu
\(\left(\int_{-2}^{2}2x^6 +3\; dx\right)\)
\(\int 2x^6 +3\; dx\)
## 85.14286 with absolute error < 9.5e-13
## Loading required package: mosaicCore
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## Attaching package: 'mosaicCalc'
## The following object is masked from 'package:stats':
##
## D
## function (x, C = 0)
## 2/7 * x^7 + 3 * x + C
\[ \begin{align} \int 2x^6 +3\; dx&=\frac{2}{6+1}x^{6+1}+3x+c\\ &=\frac{2}{7}x^{7}+3x+c\\ \end{align} \]
\(LuasLingkaran =πr^2\)
\(KelilingLingkaran=2πr\)
\(VolumeBola=\frac{4}{3}πr^3\)
\(phi = \frac{22}{7}\)
Luas dan Keliling Lingkaran serta Volume Bola dengan phi = 22/7 dan r=14 adalah
phi = 22/7
LingBol= function(phi,r)
{
Luas = phi*r^2
Keliling= 2*phi*r
Volume =round(4/3*phi*r^3, digits = 2)
return(cat(c("Luas Lingkaran :",Luas,
"Keliling Lingkaran :", Keliling,
"Volume Bola:", Volume)))
}
LingBol(22/7,14)## Luas Lingkaran : 616 Keliling Lingkaran : 88 Volume Bola: 11498.67
\(Data.Berfrekuensi\)
## Size Frekuensi
## 1 37 4
## 2 38 5
## 3 39 4
## 4 40 7
## 5 41 3
## 6 42 2
data = function(x,Frekuensi)
{maksimum = { DataUrut<-(sort(x,decreasing=F))
tail(DataUrut,n=1)}
minimum = tail(DataUrut,n=1)
rata2= round(sum(x*Frekuensi)/sum(Frekuensi), digits=2)
median <- {
totfrek <- sum(Frekuensi)
dataxy <- sort(rep.int(x,Frekuensi))
ifelse(totfrek%%2==0, median <- ((dataxy[totfrek%/%2]/2) + (dataxy[totfrek%/%2]+1)/2),
ifelse(totfrek%%2==1,
median <- ((dataxy[totfrek%/%2]))))}
mode <- {
Jabar <- sort(rep.int(x,Frekuensi))
nilai <- unique(Jabar)
tab <-tabulate(match(Jabar,nilai))
nilai[tab==max(tab)]}
z=sum(Size*Frekuensi)
xrat= z/(sum(Frekuensi))
xminxrat= (Size-xrat)^2
Frek.Rata=sum(Frekuensi*xminxrat)
variansi <- Frek.Rata/sum(Frekuensi)
standev <- sqrt(variansi)
return(cat(c("Nilai Maksimum =", maksimum,
"Nilai Minimum =", minimum,
"rata-rata =", rata2,
"Median=", median,
"Modus=", mode,
"Variansi=",variansi,
"Standar Deviasi",standev
)))
}
data(df$Size,df$Frekuensi)## Nilai Maksimum = 42 Nilai Minimum = 42 rata-rata = 39.24 Median= 39 Modus= 40 Variansi= 2.2624 Standar Deviasi 1.50412765415705