Atividade proposta foi interpretar para duas variáveis quantitativas: fazer um diagrama de dispersão e uma matriz de correlação na base de dados FifaData.csv ou questionário_estresse.xl:
#Passo 0 - Carregar as bibliotecas:
library(dplyr) #Usar %>%
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
library(readr) # Ler CSV
library(rio) #
library(corrplot) #corrplot 0.90 loaded
#Passo 1 - Importar a Base de Dados
FifaData <- read_csv("C:/Users/loren/Downloads/Estatistica/Base_de_dados-master/FifaData.csv")
-- Column specification --------------------------------------------------------
cols(
.default = col_double(),
Name = col_character(),
Nationality = col_character(),
National_Position = col_character(),
Club = col_character(),
Club_Position = col_character(),
Club_Joining = col_character(),
Height = col_character(),
Weight = col_character(),
Preffered_Foot = col_character(),
Birth_Date = col_character(),
Preffered_Position = col_character(),
Work_Rate = col_character()
)
i Use `spec()` for the full column specifications.
A base escolhida para trabalho oferece 53 variáveis, dificultanto a escolha de análise por ser uma base com um conjunto muito grande de observações, o que demanda atenção maior para observar as reais hipóteses de correlação.
Portanto os fatores de análise escolhidos para observação foram correlacionar se a idade (age) tem influência na Velocidade (speed) e na precisão de chute livre (Free kick Accuracy) dos jogadores presentes na base.
head(FifaData)# A tibble: 6 x 53
Name Nationality National_Positi~ National_Kit Club Club_Position Club_Kit
<chr> <chr> <chr> <dbl> <chr> <chr> <dbl>
1 Cristi~ Portugal LS 7 Real~ LW 7
2 Lionel~ Argentina RW 10 FC B~ RW 10
3 Neymar Brazil LW 10 FC B~ LW 11
4 Luis S~ Uruguay LS 9 FC B~ ST 9
5 Manuel~ Germany GK 1 FC B~ GK 1
6 De Gea Spain GK 1 Manc~ GK 1
# ... with 46 more variables: Club_Joining <chr>, Contract_Expiry <dbl>,
# Rating <dbl>, Height <chr>, Weight <chr>, Preffered_Foot <chr>,
# Birth_Date <chr>, Age <dbl>, Preffered_Position <chr>, Work_Rate <chr>,
# Weak_foot <dbl>, Skill_Moves <dbl>, Ball_Control <dbl>, Dribbling <dbl>,
# Marking <dbl>, Sliding_Tackle <dbl>, Standing_Tackle <dbl>,
# Aggression <dbl>, Reactions <dbl>, Attacking_Position <dbl>,
# Interceptions <dbl>, Vision <dbl>, Composure <dbl>, Crossing <dbl>,
# Short_Pass <dbl>, Long_Pass <dbl>, Acceleration <dbl>, Speed <dbl>,
# Stamina <dbl>, Strength <dbl>, Balance <dbl>, Agility <dbl>, Jumping <dbl>,
# Heading <dbl>, Shot_Power <dbl>, Finishing <dbl>, Long_Shots <dbl>,
# Curve <dbl>, Freekick_Accuracy <dbl>, Penalties <dbl>, Volleys <dbl>,
# GK_Positioning <dbl>, GK_Diving <dbl>, GK_Kicking <dbl>, GK_Handling <dbl>,
# GK_Reflexes <dbl>
summary(FifaData) Name Nationality National_Position National_Kit
Length:17588 Length:17588 Length:17588 Min. : 1.00
Class :character Class :character Class :character 1st Qu.: 6.00
Mode :character Mode :character Mode :character Median :12.00
Mean :12.22
3rd Qu.:18.00
Max. :36.00
NA's :16513
Club Club_Position Club_Kit Club_Joining
Length:17588 Length:17588 Min. : 1.00 Length:17588
Class :character Class :character 1st Qu.: 9.00 Class :character
Mode :character Mode :character Median :18.00 Mode :character
Mean :21.29
3rd Qu.:27.00
Max. :99.00
NA's :1
Contract_Expiry Rating Height Weight
Min. :2017 Min. :45.00 Length:17588 Length:17588
1st Qu.:2017 1st Qu.:62.00 Class :character Class :character
Median :2019 Median :66.00 Mode :character Mode :character
Mean :2019 Mean :66.17
3rd Qu.:2020 3rd Qu.:71.00
Max. :2023 Max. :94.00
NA's :1
Preffered_Foot Birth_Date Age Preffered_Position
Length:17588 Length:17588 Min. :17.00 Length:17588
Class :character Class :character 1st Qu.:22.00 Class :character
Mode :character Mode :character Median :25.00 Mode :character
Mean :25.46
3rd Qu.:29.00
Max. :47.00
Work_Rate Weak_foot Skill_Moves Ball_Control
Length:17588 Min. :1.000 Min. :1.000 Min. : 5.00
Class :character 1st Qu.:3.000 1st Qu.:2.000 1st Qu.:53.00
Mode :character Median :3.000 Median :2.000 Median :63.00
Mean :2.934 Mean :2.303 Mean :57.97
3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:69.00
Max. :5.000 Max. :5.000 Max. :95.00
Dribbling Marking Sliding_Tackle Standing_Tackle Aggression
Min. : 4.0 Min. : 3.00 Min. : 5.00 Min. : 3.00 Min. : 2.00
1st Qu.:47.0 1st Qu.:22.00 1st Qu.:23.00 1st Qu.:26.00 1st Qu.:44.00
Median :60.0 Median :48.00 Median :51.00 Median :54.00 Median :59.00
Mean :54.8 Mean :44.23 Mean :45.57 Mean :47.44 Mean :55.92
3rd Qu.:68.0 3rd Qu.:64.00 3rd Qu.:64.00 3rd Qu.:66.00 3rd Qu.:70.00
Max. :97.0 Max. :92.00 Max. :95.00 Max. :92.00 Max. :96.00
Reactions Attacking_Position Interceptions Vision
Min. :29.00 Min. : 2.00 Min. : 3.00 Min. :10.00
1st Qu.:55.00 1st Qu.:37.00 1st Qu.:26.00 1st Qu.:43.00
Median :62.00 Median :54.00 Median :52.00 Median :54.00
Mean :61.77 Mean :49.59 Mean :46.79 Mean :52.71
3rd Qu.:68.00 3rd Qu.:64.00 3rd Qu.:64.00 3rd Qu.:64.00
Max. :96.00 Max. :94.00 Max. :93.00 Max. :94.00
Composure Crossing Short_Pass Long_Pass Acceleration
Min. : 5.00 Min. : 6.00 Min. :10.00 Min. : 7.0 Min. :11.00
1st Qu.:47.00 1st Qu.:38.00 1st Qu.:52.00 1st Qu.:42.0 1st Qu.:57.00
Median :57.00 Median :54.00 Median :62.00 Median :56.0 Median :68.00
Mean :55.85 Mean :49.74 Mean :58.12 Mean :52.4 Mean :65.29
3rd Qu.:66.00 3rd Qu.:64.00 3rd Qu.:68.00 3rd Qu.:64.0 3rd Qu.:75.00
Max. :94.00 Max. :91.00 Max. :92.00 Max. :93.0 Max. :96.00
Speed Stamina Strength Balance
Min. :11.00 Min. :10.00 Min. :20.00 Min. :10.00
1st Qu.:58.00 1st Qu.:57.00 1st Qu.:57.00 1st Qu.:56.00
Median :68.00 Median :66.00 Median :66.00 Median :65.00
Mean :65.48 Mean :63.48 Mean :65.09 Mean :64.01
3rd Qu.:75.00 3rd Qu.:74.00 3rd Qu.:74.00 3rd Qu.:74.00
Max. :96.00 Max. :95.00 Max. :98.00 Max. :97.00
Agility Jumping Heading Shot_Power
Min. :11.00 Min. :15.00 Min. : 4.00 Min. : 3.00
1st Qu.:55.00 1st Qu.:58.00 1st Qu.:45.00 1st Qu.:45.00
Median :65.00 Median :65.00 Median :56.00 Median :59.00
Mean :63.21 Mean :64.92 Mean :52.39 Mean :55.58
3rd Qu.:74.00 3rd Qu.:73.00 3rd Qu.:65.00 3rd Qu.:69.00
Max. :96.00 Max. :95.00 Max. :94.00 Max. :93.00
Finishing Long_Shots Curve Freekick_Accuracy
Min. : 2.00 Min. : 4.0 Min. : 6.00 Min. : 4.00
1st Qu.:29.00 1st Qu.:32.0 1st Qu.:34.00 1st Qu.:31.00
Median :48.00 Median :52.0 Median :48.00 Median :42.00
Mean :45.16 Mean :47.4 Mean :47.18 Mean :43.38
3rd Qu.:61.00 3rd Qu.:63.0 3rd Qu.:62.00 3rd Qu.:57.00
Max. :95.00 Max. :91.0 Max. :92.00 Max. :93.00
Penalties Volleys GK_Positioning GK_Diving
Min. : 7.00 Min. : 3.00 Min. : 1.00 Min. : 1.00
1st Qu.:39.00 1st Qu.:30.00 1st Qu.: 8.00 1st Qu.: 8.00
Median :50.00 Median :44.00 Median :11.00 Median :11.00
Mean :49.17 Mean :43.28 Mean :16.61 Mean :16.82
3rd Qu.:61.00 3rd Qu.:57.00 3rd Qu.:14.00 3rd Qu.:14.00
Max. :96.00 Max. :93.00 Max. :91.00 Max. :89.00
GK_Kicking GK_Handling GK_Reflexes
Min. : 1.00 Min. : 1.00 Min. : 1.0
1st Qu.: 8.00 1st Qu.: 8.00 1st Qu.: 8.0
Median :11.00 Median :11.00 Median :11.0
Mean :16.46 Mean :16.56 Mean :16.9
3rd Qu.:14.00 3rd Qu.:14.00 3rd Qu.:14.0
Max. :95.00 Max. :91.00 Max. :90.0
#Age x Speed
plot(FifaData$Speed,FifaData$Age, pch=19, col= "royal blue",
main= "AGE X SPEED")
abline(lsfit(FifaData$Speed,FifaData$Age))#Age x Speed
cor(FifaData$Speed,FifaData$Age)[1] -0.1684175
#Age x Freekick_Accuracy
plot(FifaData$Freekick_Accuracy,FifaData$Age, pch=19, col= "royal blue",
main= "AGE X Freekick_Accuracy")
abline(lsfit(FifaData$Freekick_Accuracy,FifaData$Age))#Age x Freekick_Accuracy
cor(FifaData$Freekick_Accuracy,FifaData$Age)[1] 0.1956402
Através da matriz de covariância podemos visualizar de forma única que: a idade não interfere de forma significativa na velocidade de um jogador, poi o número da correlação é insignificante. Em contra posição, percebemos que a idade é um fator significativo para a precisão de chute. Pois a covariância apresenta um grau excelente de associação.
Vale ressaltar que através da matriz foi possivel observar uma terceira correlação entre variáveis que apresentou um forte grau de associação que foi a velocidade com precisão de chute.
Aparentemente idade e a velicidade são fatores que sim, possuem influência na precisão de chute dos jogadores.
#names(CARROS)
#selescionado variáveis com Dplayr
FIFA<-FifaData %>% select(Age,Speed,Freekick_Accuracy) %>% cor()
FIFA Age Speed Freekick_Accuracy
Age 1.0000000 -0.1684175 0.1956402
Speed -0.1684175 1.0000000 0.4622920
Freekick_Accuracy 0.1956402 0.4622920 1.0000000
corrplot.mixed(FIFA)corrplot(FIFA,method="pie")