Show \(x^{2} + exp(x) + 2 x^{4} + 1\) is convex.
Solution:
A function is considered convex if \(f( \alpha x + \beta y) \leq \alpha f(x) + \beta f(y)\), \(\forall x,y \in \Omega\), \(\alpha \ge 0, \beta \ge 0\), \(\alpha + \beta = 1\)
\((\alpha x + \beta y)^{2} + exp(\alpha x + \beta y) + 2 (\alpha x + \beta y)^{4} + 1 \leq \alpha (x^{2} + exp(x) + 2 x^{4} + 1) + \beta (y^{2} + exp(y) + 2 y^{4} + 1)\)
\((\alpha^{2} x^{2} + \beta^{2} y^{2} + 2 \alpha \beta x y ) + exp(\alpha x + \beta y) + 2 (\alpha x + \beta y)^{4} + 1 \leq \alpha x^{2} + \alpha exp(x) + 2 \alpha x^{4} + \alpha + \beta y^{2} + \beta exp(y) + 2 \beta y^{4} + \beta\)
Using \(\alpha + \beta = 1\) we rewrite as
\((\alpha^{2} x^{2} + \beta^{2} y^{2} + 2 \alpha \beta x y ) + exp(\alpha x + \beta y) + 2 (\alpha x + \beta y)^{4} \leq \alpha x^{2} + \alpha exp(x) + 2 \alpha x^{4} + \beta y^{2} + \beta exp(y) + 2 \beta y^{4}\)
\(2 \alpha x^{4} + \alpha x^{2} + \alpha exp(x) + 2 \beta y^{4} + \beta y^{2} + \beta exp(y) - (\alpha x + \beta y)^{2} - exp(\alpha x - \beta y) - 2 (\alpha x + \beta y)^{4} \geq 0\)
The inequality is always true and hence \(x^{2} + exp(x) + 2 x^{4} + 1\) is convex.
Show that the mean of the exponential distribution
\(p(x) = \begin{cases} \lambda e^{- \lambda x}, & x \geq 0 ( \lambda > 0),\\0, & x < 0\end{cases}\)
is \(\mu = \frac{1}{ \lambda }\) and its variance is \(\sigma ^{2} = \frac{1}{ \lambda ^{2} }\).
Solution:
To find the mean we know that \(\mu = E[X] =\int xp(x)dx\)
\(\mu = \int_{-\infty}^0 x*0dx + \int_0^ \infty x \lambda e^{- \lambda x} dx\)
Using integration by parts \(\int u v dx = u \int v dx - \int u' (\int v dx) dx\)
replacing \(u=x, v=\lambda e^{- \lambda x}\) we will have
\(\mu =[-x e^{- \lambda x}]_0^ \infty + \int_0^ \infty e^{- \lambda x} dx\)
\(\mu =[-x e^{- \lambda x}]_0^ \infty + [ -\frac{1}{ \lambda } e^{- \lambda x}]_0^ \infty\)
\(\mu = (0 - 0) + (0 + \frac{1}{ \lambda })\) = \(\frac{1}{ \lambda }\)
To find the variance of the given exponential distribution we know that \(\sigma ^{2} = Var[X] = E[ X^{2}] - E[X] ^{2}\)
\(E[ X^{2}] = \int_0^ \infty x^{2} \lambda e^{- \lambda x}\) which could again be solved by using integration by parts
\(E[ X^{2}] = [-x^{2} e^{- \lambda x}]_0^ \infty + \int_0^ \infty 2xe^{- \lambda x} dx\)
\(E[ X^{2}] = [-x^{2} e^{- \lambda x}]_0^ \infty +[- \frac{2}{ \lambda } x e^{- \lambda x} dx]_0^ \infty + \frac{2}{ \lambda } \int_0^ \infty e^{- \lambda x} dx\)
using integration by parts again
\(E[ X^{2}] = [-x^{2} e^{- \lambda x}]_0^ \infty +[- \frac{2}{ \lambda } x e^{- \lambda x} dx]_0^ \infty + \frac{2}{ \lambda } [- \frac{1}{ \lambda } x e^{- \lambda x} dx]_0^ \infty\)
\((\frac{2}{ \lambda })( \frac{1}{ \lambda })\) = \(\frac{2}{ \lambda ^{2}}\)
\(E[ X^{2}] - E[X] ^{2} = \frac{2}{\lambda ^{2}} - (\frac{1}{ \lambda }) ^{2} = \frac{2}{\lambda ^{2}} - \frac{1}{\lambda ^{2}} = \frac{1}{ \lambda ^{2}}\)
It is estimated that there is a typo in every 250 data entries in a database, assuming the number of typos can obey the Poisson distribution. For a given 1000 data entries, what is the probability of exactly 4 typos? What is the probability of no typo at all? Use R to draw 1000 samples with \(\lambda = 4\) and show their histogram.
Solution:
what is the probability of exactly 4 typos?
<- 1000 * (1/250)
lambda <- 4 # 4 typos
x <- (lambda ^ x * exp(-lambda)) / factorial(x)
p_four_typo p_four_typo
## [1] 0.1953668
The probability of exactly 4 typos is 19.54%.
What is the probability of no typo at all?
<- 4
lambda <- 0 # no typo
x <- (lambda ^ x * exp(-lambda)) / factorial(x)
p_zero_typo p_zero_typo
## [1] 0.01831564
The probability of no typos at all is 1.83%.
Now let’s confirm our results above using built in R function.
# probability of exactly 4 typos
<- dpois(4, lambda = 4)
p1 p1
## [1] 0.1953668
# probability of no typo
<- dpois(0, lambda = 4)
q2 q2
## [1] 0.01831564
Use R to draw 1000 samples with \(\lambda = 4\) and show their histogram.
= 1:1000
events = 4
lambda <- rpois(1000, lambda)
poisson <- data.frame(events, poisson)
df
hist(df$poisson, main = "1000 Samples with lambda = 4")