Metode Space Time Analysis

yaitu pemodelan deret waktu secara bersama dari lokasi-lokasi berdekatan dimana antar lokasi saling berpengaruh dan masing lokasi-lokasi punya deret waktu.

# Package yang digunakan
library(readxl)
library(starma)
library(tseries)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library(psych)
library(gstar)
## Loading required package: ggplot2
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
library(ggplot2)

Informasi Data

Untuk penelitian ini, digunakan data penderita DBD di Provinsi DKI Jakarta dan jumlah penduduk untuk setiap kecamatan di Provinsi DKI Jakarta. Data penderita DBD secara mingguan sepanjang tahun 2013 yang kami peroleh dari Dinas Kesehatan. Sedangkan data jumlah penduduk untuk setiap kecamatan di Provinsi DKI Jakarta dari link berikut: https://data.jakarta.go.id/dataset/jumlahpendudukberdasarkanusiaperkelurahandkijakarta/resource/7a6be211-4e8b-487c-a67a-bc796e793eb0

# Input data_train
data <- read_excel("D:/SEMESTER 7/Kapseltat/Tubes Space Time/dataa.xlsx")
data <- data[1:52,]
koor <- read_excel("D:/SEMESTER 7/Kapseltat/Tubes Space Time/koord.xlsx")
# Plot Data Koordinat untuk setiap kecamatan di Provinsi DKI Jakarta
ggplot(koor, aes(x = X, y = Y, color = 'red')) + geom_point()

# Banyaknya Observasi per lokasi
T = 52

# Banyaknya lokasi
N = 41

# Membentuk data menjadi data time series dalam bentuk matrix
data_train <- data.matrix((ts(data))) 

Stastistika Deskriptif

# Statistik Deskriptif
describe(data_train)
##                   vars  n  mean   sd median trimmed   mad min max range  skew
## GAMBIR               1 52  3.08 1.38    3.0    3.02  1.48   1   7     6  0.30
## SAWAH BESAR          2 52  4.06 1.91    4.0    3.98  2.22   1   9     8  0.27
## KEMAYORAN            3 52  7.54 3.43    8.0    7.40  2.97   2  17    15  0.33
## SENEN                4 52  3.88 1.73    4.0    3.83  1.48   1   8     7  0.20
## CEMPAKA PUTIH        5 52  2.96 1.34    3.0    2.90  1.48   1   6     5  0.21
## MENTENG              6 52  2.69 1.21    3.0    2.64  1.48   1   6     5  0.20
## TANAH ABANG          7 52  5.44 2.42    6.0    5.31  2.97   2  12    10  0.44
## JOHAR BARU           8 52  4.25 1.87    4.5    4.19  2.22   1   9     8  0.17
## PENJARINGAN          9 52 12.42 5.07   12.0   12.21  5.93   4  24    20  0.33
## TANJUNG PRIOK       10 52 16.67 6.84   17.0   16.33  8.90   6  32    26  0.35
## KOJA                11 52 13.77 5.57   14.0   13.50  7.41   5  26    21  0.34
## CILINCING           12 52 16.98 6.95   17.0   16.69  8.90   6  32    26  0.31
## KELAPA GADING       13 52 11.79 4.77   12.0   11.57  5.93   4  22    18  0.32
## CENGKARENG          14 52 13.17 4.60   13.5   12.90  5.19   6  23    17  0.40
## GROGOL PETAMBURAN   15 52  5.63 1.98    6.0    5.52  2.97   2  10     8  0.40
## TAMAN SARI          16 52  3.13 1.17    3.0    3.05  1.48   1   6     5  0.53
## TAMBORA             17 52  6.77 2.37    7.0    6.62  2.97   3  12     9  0.43
## KEBON JERUK         18 52  8.17 2.80    8.5    8.07  3.71   3  14    11  0.23
## KALI DERES          19 52 10.27 3.57   10.5   10.05  4.45   4  18    14  0.37
## PALMERAH            20 52  5.50 1.95    6.0    5.38  1.48   2  10     8  0.42
## KEMBANGAN           21 52  6.60 2.21    7.0    6.48  2.97   3  11     8  0.34
## TEBET               22 52  9.25 3.29    9.0    9.00  2.97   4  17    13  0.62
## SETIA BUDI          23 52  4.50 1.67    4.0    4.40  1.48   2   8     6  0.53
## MAMPANG PRAPATAN    24 52  5.94 2.05    6.0    5.81  2.22   3  11     8  0.60
## PASAR MINGGU        25 52 11.77 4.20   11.5   11.50  3.71   5  22    17  0.54
## KEBAYORAN LAMA      26 52 11.79 4.24   11.5   11.50  3.71   5  22    17  0.57
## CILANDAK            27 52  8.04 2.82    8.0    7.83  2.97   4  15    11  0.61
## KEBAYORAN BARU      28 52  5.94 2.05    6.0    5.81  2.22   3  11     8  0.60
## PANCORAN            29 52  6.23 2.25    6.0    6.05  1.48   3  12     9  0.69
## JAGAKARSA           30 52 11.77 4.20   11.5   11.50  3.71   5  22    17  0.54
## PESANGGRAHAN        31 52  8.98 3.12    9.0    8.76  2.97   4  17    13  0.56
## MATRAMAN            32 52  7.73 3.08    8.0    7.74  4.45   3  13    10 -0.02
## PULO GADUNG         33 52 12.37 4.92   12.0   12.40  7.41   4  21    17 -0.03
## JATINEGARA          34 52 13.06 5.23   13.0   13.10  7.41   4  23    19  0.00
## KRAMAT JATI         35 52 11.92 4.78   12.0   11.95  7.41   4  21    17 -0.04
## PASAR REBO          36 52  8.48 3.44    8.0    8.45  5.19   3  15    12  0.01
## CAKUNG              37 52 20.37 8.12   20.0   20.43 11.86   7  35    28 -0.03
## DUREN SAWIT         38 52 16.48 6.59   16.0   16.55 10.38   5  28    23 -0.05
## MAKASAR             39 52  8.40 3.34    8.0    8.43  4.45   3  15    12 -0.03
## CIRACAS             40 52 11.46 4.58   11.0   11.50  7.41   4  20    16 -0.03
## CIPAYUNG            41 52 10.04 4.05   10.0   10.07  5.93   3  17    14 -0.06
##                   kurtosis   se
## GAMBIR               -0.18 0.19
## SAWAH BESAR          -0.55 0.27
## KEMAYORAN            -0.31 0.48
## SENEN                -0.48 0.24
## CEMPAKA PUTIH        -0.66 0.19
## MENTENG              -0.34 0.17
## TANAH ABANG          -0.31 0.34
## JOHAR BARU           -0.52 0.26
## PENJARINGAN          -0.90 0.70
## TANJUNG PRIOK        -0.93 0.95
## KOJA                 -0.95 0.77
## CILINCING            -0.97 0.96
## KELAPA GADING        -0.97 0.66
## CENGKARENG           -0.68 0.64
## GROGOL PETAMBURAN    -0.50 0.27
## TAMAN SARI           -0.28 0.16
## TAMBORA              -0.61 0.33
## KEBON JERUK          -0.75 0.39
## KALI DERES           -0.65 0.49
## PALMERAH             -0.33 0.27
## KEMBANGAN            -0.86 0.31
## TEBET                -0.30 0.46
## SETIA BUDI           -0.49 0.23
## MAMPANG PRAPATAN     -0.40 0.28
## PASAR MINGGU         -0.37 0.58
## KEBAYORAN LAMA       -0.32 0.59
## CILANDAK             -0.32 0.39
## KEBAYORAN BARU       -0.40 0.28
## PANCORAN             -0.09 0.31
## JAGAKARSA            -0.37 0.58
## PESANGGRAHAN         -0.36 0.43
## MATRAMAN             -1.41 0.43
## PULO GADUNG          -1.34 0.68
## JATINEGARA           -1.34 0.73
## KRAMAT JATI          -1.32 0.66
## PASAR REBO           -1.29 0.48
## CAKUNG               -1.37 1.13
## DUREN SAWIT          -1.37 0.91
## MAKASAR              -1.27 0.46
## CIRACAS              -1.35 0.64
## CIPAYUNG             -1.38 0.56

Rata-rata penderita DBD setiap kecamatan di Provinsi DKI Jakarta sepanjang tahun 2013 dengan minimum 2,69 orang yang berada di Kecamatan Menteng dan maksimum 20,36 orang yang berada di Kecamatan Cakung. Banyak penderita terkecil hanya seorang dan terbesar sebanyak 35 orang di Kecamatan Cakung di tahun 2016. Penderita DBD setiap kecamatan di Provinsi DKI Jakarta tahun 2013 juga sangat beragam ditandai dengan besarnya standar deviasi. Kemencengan (skewness) positif yang artinya data menumpuk di nilai yang lebih kecil dari rataan. Kemudian keruncingan (kurtosis) < 3 yaitu distribusi lebih landai dari distribusi normal. Kurtosis negatif menandakan distribusi yang relatif datar.

# Plot Data
plot(data_train[,1], type = "l", lty = 1, col = 1, ylim = c(0,50), 
     ylab = "Jumlah Penderita DBD", xlab = "Minggu")
for (i in 2:N) {
  lines(data_train[,i], type = "l", col = i, lty = i)
}

Berdasarkan plot deret waktu tersebut data penderita DBD setiap kecamatan di Provinsi DKI Jakarta sepanjang tahun 2013 secara mingguan sangatlah beragam. Terlihat bahwa sekilas data tidak stasioner, yaitu terdapat variansi yang cukup besar pada beberapa kecamatan.

Cek Stasioneritas

digunakan uji ADF (Augmented Dickey-Fuller) untuk mengecek apakah data yang digunakan stasioner atau tidak.

# Uji Kestasioneran
for (i in 1:N){
  print(adf.test(data_train[,i]))
}
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -2.9148, Lag order = 3, p-value = 0.2064
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -3.2923, Lag order = 3, p-value = 0.08233
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -3.2567, Lag order = 3, p-value = 0.0879
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -3.0374, Lag order = 3, p-value = 0.1571
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -2.7616, Lag order = 3, p-value = 0.2681
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -3.0232, Lag order = 3, p-value = 0.1628
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -3.1643, Lag order = 3, p-value = 0.1061
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -3.1273, Lag order = 3, p-value = 0.121
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -2.3822, Lag order = 3, p-value = 0.4207
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -2.3417, Lag order = 3, p-value = 0.437
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -2.3451, Lag order = 3, p-value = 0.4356
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -2.3576, Lag order = 3, p-value = 0.4306
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -2.3572, Lag order = 3, p-value = 0.4307
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -2.8896, Lag order = 3, p-value = 0.2166
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -3.1004, Lag order = 3, p-value = 0.1318
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -2.8295, Lag order = 3, p-value = 0.2408
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -2.8421, Lag order = 3, p-value = 0.2357
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -2.9915, Lag order = 3, p-value = 0.1756
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -2.9925, Lag order = 3, p-value = 0.1752
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -2.6999, Lag order = 3, p-value = 0.2929
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -2.9752, Lag order = 3, p-value = 0.1821
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -1.3795, Lag order = 3, p-value = 0.824
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -1.3214, Lag order = 3, p-value = 0.8474
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -1.2302, Lag order = 3, p-value = 0.8841
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -1.4319, Lag order = 3, p-value = 0.8029
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -1.4236, Lag order = 3, p-value = 0.8063
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -1.4253, Lag order = 3, p-value = 0.8056
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -1.2302, Lag order = 3, p-value = 0.8841
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -1.336, Lag order = 3, p-value = 0.8415
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -1.4319, Lag order = 3, p-value = 0.8029
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -1.4255, Lag order = 3, p-value = 0.8055
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -1.9204, Lag order = 3, p-value = 0.6064
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -1.8312, Lag order = 3, p-value = 0.6423
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -1.881, Lag order = 3, p-value = 0.6223
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -1.8101, Lag order = 3, p-value = 0.6508
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -1.821, Lag order = 3, p-value = 0.6464
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -1.8431, Lag order = 3, p-value = 0.6375
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -1.8124, Lag order = 3, p-value = 0.6499
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -1.7708, Lag order = 3, p-value = 0.6666
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -1.8344, Lag order = 3, p-value = 0.641
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_train[, i]
## Dickey-Fuller = -1.8463, Lag order = 3, p-value = 0.6362
## alternative hypothesis: stationary

Berdasarkan uji ADF (Augmented Dickey-Fuller), setiap kecamatan di Provinsi DKI Jakarta sepanjang tahun 2013 diperoleh p-value > 𝛂, dengan 𝛂 = 0.05. Sehingga disimpulkan bahwa data tidak stasioner. Maka, selanjutnya data didiferensi dan di cek kembali kestasioneritasnya.

# Differencing data
diff_data_train = matrix(0, T, N)
for (i in 2:T){
  diff_data_train[i,] = data_train[i,] - data_train[(i-1),]
}
# Menghilangkan baris 0 di t=1
diff_data_train_used = matrix(0, (T-1), N)
for (i in 1:(T-1)){
  diff_data_train_used[i,] = diff_data_train[i+1,]
}
# Uji Kestasioneran
for (i in 1:N){
  print(adf.test(diff_data_train_used[,i]))
}
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -5.4506, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -5.0713, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -4.8106, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -5.0148, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -5.3406, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -4.7954, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -5.1336, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -5.1591, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -4.1849, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -4.1707, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -4.0922, Lag order = 3, p-value = 0.01248
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -4.2551, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -4.2862, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -5.9777, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -6.256, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -5.4196, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -5.7682, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -5.9271, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -5.8244, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -5.4323, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -6.1126, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -3.5821, Lag order = 3, p-value = 0.04316
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -4.1186, Lag order = 3, p-value = 0.01135
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -3.6963, Lag order = 3, p-value = 0.03364
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -3.6956, Lag order = 3, p-value = 0.0337
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -3.6476, Lag order = 3, p-value = 0.0377
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -3.8114, Lag order = 3, p-value = 0.02451
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -3.6963, Lag order = 3, p-value = 0.03364
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -3.5442, Lag order = 3, p-value = 0.04632
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -3.6956, Lag order = 3, p-value = 0.0337
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -3.776, Lag order = 3, p-value = 0.027
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -4.3052, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -4.206, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -4.2523, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## Warning in adf.test(diff_data_train_used[, i]): p-value smaller than printed p-
## value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -4.2868, Lag order = 3, p-value = 0.01
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -4.0586, Lag order = 3, p-value = 0.01392
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -3.9388, Lag order = 3, p-value = 0.01905
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -4.0155, Lag order = 3, p-value = 0.01577
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -3.69, Lag order = 3, p-value = 0.03417
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -4.1063, Lag order = 3, p-value = 0.01187
## alternative hypothesis: stationary
## 
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff_data_train_used[, i]
## Dickey-Fuller = -4.0745, Lag order = 3, p-value = 0.01324
## alternative hypothesis: stationary

Berdasarkan hasil uji ADF (Augmented Dickey-Fuller), dengan 𝛂 = 0.05 diperoleh p-value = 0,01 < 𝛂 sehingga disimpulkan bahwa data yang telah didiferensi sekali telah stasioner.

Matriks Bobot Seragam

#Matriks Bobot Seragam
w0 = diag(N)
w1 = diag(0, N)
for (i in 1:41) {
  for (j in 1:41) {
    if (i != j) {
      w1[i,j] = 1/40
    }
  }
}
W = list(w0,w1)

Identifikasi Model

Selanjutnya dilakukan estimasi model dengan melihat plot ACF (Autocorrelation Function) dan PACF (Partial Autocorrelation Function).

#Membentuk matriks Y
Y <- matrix(0, nrow = (T-1), ncol = N)
for (i in 1:N){
  Y[,i] <- diff_data_train_used[,i]
}
#Identifikasi Orde
stacf(Y, W)

stpacf(Y, W)

Model yang mungkin adalah GSTAR(1;1) dan GSTAR(2;1,1)

GSTAR(1;1)

Estimasi parameter setiap kecamatan di Provinsi DKI Jakarta

fitmodel1 <- gstar(data,w1,p=1,d=1,est="OLS")
summary(fitmodel1)
## 
## Coefficients: 
##                            Estimate    Std.Err t value Pr(>|t|)
## psi10(GAMBIR)             -0.226321 309.790612  -0.001    0.999
## psi10(SAWAH BESAR)        -0.352196 150.092489  -0.002    0.998
## psi10(KEMAYORAN)          -0.199820  52.728138  -0.004    0.997
## psi10(SENEN)              -0.344609 184.145500  -0.002    0.999
## psi10(CEMPAKA PUTIH)      -0.365417 247.669493  -0.001    0.999
## psi10(MENTENG)            -0.396588 282.772713  -0.001    0.999
## psi10(TANAH ABANG)        -0.234222  91.240499  -0.003    0.998
## psi10(JOHAR BARU)         -0.294878 148.821461  -0.002    0.998
## psi10(PENJARINGAN)        -0.480456  45.460592  -0.011    0.992
## psi10(TANJUNG PRIOK)      -0.409340  26.561042  -0.015    0.988
## psi10(KOJA)               -0.439171  40.031222  -0.011    0.991
## psi10(CILINCING)          -0.432912  23.666290  -0.018    0.985
## psi10(KELAPA GADING)      -0.451912  52.693671  -0.009    0.993
## psi10(CENGKARENG)         -0.130284  49.699171  -0.003    0.998
## psi10(GROGOL PETAMBURAN)  -0.306420 190.391246  -0.002    0.999
## psi10(TAMAN SARI)         -0.175733 554.210176   0.000    1.000
## psi10(TAMBORA)            -0.248614 188.557059  -0.001    0.999
## psi10(KEBON JERUK)        -0.134141 144.185294  -0.001    0.999
## psi10(KALI DERES)         -0.109651  83.601632  -0.001    0.999
## psi10(PALMERAH)           -0.179812 254.451659  -0.001    0.999
## psi10(KEMBANGAN)          -0.208979 180.140676  -0.001    0.999
## psi10(TEBET)               0.042699 182.425535   0.000    1.000
## psi10(SETIA BUDI)         -0.274574 431.677128  -0.001    0.999
## psi10(MAMPANG PRAPATAN)   -0.171046 362.978347   0.000    1.000
## psi10(PASAR MINGGU)       -0.285971  88.400742  -0.003    0.997
## psi10(KEBAYORAN LAMA)     -0.298337  90.855379  -0.003    0.997
## psi10(CILANDAK)           -0.068602 211.083926   0.000    1.000
## psi10(KEBAYORAN BARU)     -0.171046 362.978347   0.000    1.000
## psi10(PANCORAN)           -0.162443 314.547605  -0.001    1.000
## psi10(JAGAKARSA)          -0.285971  88.400742  -0.003    0.997
## psi10(PESANGGRAHAN)       -0.156904 163.281948  -0.001    0.999
## psi10(MATRAMAN)           -0.475807 187.292992  -0.003    0.998
## psi10(PULO GADUNG)        -0.451456  59.626015  -0.008    0.994
## psi10(JATINEGARA)         -0.510933  54.122021  -0.009    0.992
## psi10(KRAMAT JATI)        -0.572298  69.860027  -0.008    0.993
## psi10(PASAR REBO)         -0.451872 131.820830  -0.003    0.997
## psi10(CAKUNG)             -0.463637  25.122559  -0.018    0.985
## psi10(DUREN SAWIT)        -0.517441  38.055590  -0.014    0.989
## psi10(MAKASAR)            -0.558417 138.448438  -0.004    0.997
## psi10(CIRACAS)            -0.431709  77.439728  -0.006    0.996
## psi10(CIPAYUNG)           -0.429268 106.484784  -0.004    0.997
## psi11(GAMBIR)             -0.098348 103.817400  -0.001    0.999
## psi11(SAWAH BESAR)         0.002989  95.975289   0.000    1.000
## psi11(KEMAYORAN)          -0.227369 105.514256  -0.002    0.998
## psi11(SENEN)              -0.056450  95.723732  -0.001    1.000
## psi11(CEMPAKA PUTIH)      -0.020734  85.837487   0.000    1.000
## psi11(MENTENG)             0.021271  81.109862   0.000    1.000
## psi11(TANAH ABANG)        -0.159803 103.790155  -0.002    0.999
## psi11(JOHAR BARU)          0.018792  88.976326   0.000    1.000
## psi11(PENJARINGAN)         0.155350 179.893781   0.001    0.999
## psi11(TANJUNG PRIOK)       0.008723 204.273448   0.000    1.000
## psi11(KOJA)                0.075085 202.202670   0.000    1.000
## psi11(CILINCING)           0.091811 189.020673   0.000    1.000
## psi11(KELAPA GADING)       0.044532 201.498579   0.000    1.000
## psi11(CENGKARENG)         -0.275462 178.361062  -0.002    0.999
## psi11(GROGOL PETAMBURAN)  -0.093145 147.362998  -0.001    0.999
## psi11(TAMAN SARI)         -0.087018 175.876489   0.000    1.000
## psi11(TAMBORA)            -0.054709 169.345364   0.000    1.000
## psi11(KEBON JERUK)        -0.145220 176.016580  -0.001    0.999
## psi11(KALI DERES)         -0.293835 175.855438  -0.002    0.999
## psi11(PALMERAH)           -0.095736 152.322558  -0.001    0.999
## psi11(KEMBANGAN)          -0.084665 154.203858  -0.001    1.000
## psi11(TEBET)              -0.270682 264.434312  -0.001    0.999
## psi11(SETIA BUDI)          0.024387 186.248357   0.000    1.000
## psi11(MAMPANG PRAPATAN)    0.033320 213.164903   0.000    1.000
## psi11(PASAR MINGGU)        0.128925 244.901783   0.001    1.000
## psi11(KEBAYORAN LAMA)      0.123127 259.754549   0.000    1.000
## psi11(CILANDAK)           -0.136250 248.595611  -0.001    1.000
## psi11(KEBAYORAN BARU)      0.033320 213.164903   0.000    1.000
## psi11(PANCORAN)            0.014373 212.468203   0.000    1.000
## psi11(JAGAKARSA)           0.128925 244.901783   0.001    1.000
## psi11(PESANGGRAHAN)       -0.025830 242.147048   0.000    1.000
## psi11(MATRAMAN)            0.359308 217.671263   0.002    0.999
## psi11(PULO GADUNG)         0.576648 169.890323   0.003    0.997
## psi11(JATINEGARA)          0.691158 190.275391   0.004    0.997
## psi11(KRAMAT JATI)         0.722881 207.953631   0.003    0.997
## psi11(PASAR REBO)          0.395852 192.135847   0.002    0.998
## psi11(CAKUNG)              1.010824 203.681428   0.005    0.996
## psi11(DUREN SAWIT)         0.902423 202.037699   0.004    0.996
## psi11(MAKASAR)             0.471744 184.420051   0.003    0.998
## psi11(CIRACAS)             0.482411 196.060904   0.002    0.998
## psi11(CIPAYUNG)            0.496811 193.800056   0.003    0.998
## 
## 
## AIC: 9540

Terdapat dua paramater dalman model GSTAR(1;1) yaitu psi10 dan psi11 untuk setiap setiap kecamatan di Provinsi DKI Jakarta. Diperoleh pula nilai AIC untuk model GSTAR(1;1) adalah sebesar 9540.

phi = fitmodel1$B
phi10_1 = phi[1:41,]
phi11_1 = phi[42:82,]

phi_10_1 = diag(phi10_1,41)
phi_11_1 = diag(phi11_1,41)

D = phi_10_1 + (phi_11_1%*%w1)
##Generate Data GSTAR(1;1)
model_Y1=t(Y)
model1_1=matrix(0,nrow=N,ncol=T)
for(i in 2:T){
  model1_1[,i]=D%*%(model_Y1[,(i-1)])
}
T = 52
#Returns data_train to initial data_train (diff)
modeldata_train1 = matrix(0,nrow=N,ncol=T)
data_train1_1 = t(data_train)
I = diag(41)
for (i in (3:N)) {
  for (j in (3:T)){
    modeldata_train1[,j] = (D+I)%*%data_train1_1[,j-1]-D%*%data_train1_1[,j-2]
  }
}

modeldata_train1 = t(modeldata_train1)

## menghilangkan baris 0 di t=1
modeldata1 = matrix(0,(T-2),N)
for (i in 1:(T-2)){
  modeldata1[i,]=modeldata_train1[i+2,]
}

data_train1 = data_train[1:50,]

Uji Diagnostik

Model dikatakan cocok jika rataan nol dan variansi residual konstan, residual berdistribusi normal, dan residual saling bebas.

Residual1 = matrix(0,nrow=T-2,ncol=N)
par(mfrow=c(2,2))
for (i in 1:N){
  Residual1[,i]=modeldata1[,i]-data_train1[,i]
  plot(Residual1[,i],type='l',main = paste("Residual Kecamatan", i))
  abline(h=0)
  acf(Residual1[,i],main = paste("ACF Residual Kecamatan", i))
  qqnorm(Residual1[,i],main = paste("Normalitas Residual Kecamatan", i))
  qqline(Residual1[,i])
  hist(Residual1[,i],main = paste("Histogram Residual Kecamatan", i)) 
}

# Uji Kenormalan Residual
for (i in 1:N) {
  print(shapiro.test(Residual1[,i]))
}
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.97243, p-value = 0.2898
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.9401, p-value = 0.0136
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.97823, p-value = 0.4801
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.95657, p-value = 0.06389
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.93618, p-value = 0.009543
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.91678, p-value = 0.001807
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.96005, p-value = 0.08933
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.93445, p-value = 0.008175
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.95976, p-value = 0.08688
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.96569, p-value = 0.1537
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.96271, p-value = 0.1154
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.96888, p-value = 0.2083
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.96606, p-value = 0.1594
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.94968, p-value = 0.03309
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.9595, p-value = 0.08467
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.90293, p-value = 0.0006013
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.91545, p-value = 0.001622
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.95534, p-value = 0.05677
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.95586, p-value = 0.05966
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.95347, p-value = 0.04743
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.94658, p-value = 0.02473
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.98137, p-value = 0.6112
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.93043, p-value = 0.005739
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.95879, p-value = 0.07909
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.96424, p-value = 0.1338
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.96139, p-value = 0.1016
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.98525, p-value = 0.7823
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.95879, p-value = 0.07909
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.94643, p-value = 0.02439
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.96424, p-value = 0.1338
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.95539, p-value = 0.05703
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.9625, p-value = 0.1131
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.9733, p-value = 0.3136
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.96912, p-value = 0.2131
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.9536, p-value = 0.04805
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.96736, p-value = 0.1804
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.96333, p-value = 0.1225
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.96174, p-value = 0.1051
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.96627, p-value = 0.1626
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.97128, p-value = 0.2607
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual1[, i]
## W = 0.95703, p-value = 0.06674
#Uji Independensi Residual 
for (i in 1:N) {
  print(Box.test(Residual1[,i],lag = 20, type = "Ljung-Box"))
}
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 25.747, df = 20, p-value = 0.1743
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 23.318, df = 20, p-value = 0.2735
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 26.647, df = 20, p-value = 0.1455
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 20.051, df = 20, p-value = 0.4547
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 29.314, df = 20, p-value = 0.08175
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 21.379, df = 20, p-value = 0.3751
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 33.664, df = 20, p-value = 0.02849
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 24.192, df = 20, p-value = 0.2341
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 40.859, df = 20, p-value = 0.003884
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 42.223, df = 20, p-value = 0.002586
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 40.873, df = 20, p-value = 0.003868
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 38.53, df = 20, p-value = 0.007623
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 45.031, df = 20, p-value = 0.001093
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 15.106, df = 20, p-value = 0.7703
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 20.217, df = 20, p-value = 0.4445
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 17.005, df = 20, p-value = 0.6526
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 13.931, df = 20, p-value = 0.834
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 15.686, df = 20, p-value = 0.7359
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 19.1, df = 20, p-value = 0.5153
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 15.878, df = 20, p-value = 0.7242
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 16.445, df = 20, p-value = 0.6887
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 18.481, df = 20, p-value = 0.5558
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 37.831, df = 20, p-value = 0.009286
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 31.374, df = 20, p-value = 0.05044
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 22.365, df = 20, p-value = 0.321
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 23.018, df = 20, p-value = 0.2879
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 19.386, df = 20, p-value = 0.4969
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 31.374, df = 20, p-value = 0.05044
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 18.897, df = 20, p-value = 0.5285
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 22.365, df = 20, p-value = 0.321
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 20.056, df = 20, p-value = 0.4544
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 25.525, df = 20, p-value = 0.1821
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 26.413, df = 20, p-value = 0.1526
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 27.232, df = 20, p-value = 0.1289
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 30.678, df = 20, p-value = 0.05959
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 33.249, df = 20, p-value = 0.03167
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 28.417, df = 20, p-value = 0.09989
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 29.51, df = 20, p-value = 0.07818
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 32.461, df = 20, p-value = 0.03863
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 26.2, df = 20, p-value = 0.1593
## 
## 
##  Box-Ljung test
## 
## data:  Residual1[, i]
## X-squared = 28.708, df = 20, p-value = 0.09367
#Menghitung MSE
MSE1 = matrix(0,1,N)
for(i in 1:N){
  MSE1[,i] = mean(Residual1[,i]*Residual1[,i])
}
MSE1
##           [,1]      [,2]     [,3]      [,4]     [,5]      [,6]     [,7]
## [1,] 0.5020394 0.8183722 3.187395 0.6155828 0.412107 0.3326597 1.685706
##           [,8]    [,9]    [,10]    [,11]    [,12]    [,13]    [,14]     [,15]
## [1,] 0.9294936 3.81934 7.520311 4.933853 7.780821 3.509586 6.104108 0.9074726
##          [,16]    [,17]    [,18]    [,19]     [,20]    [,21]    [,22]     [,23]
## [1,] 0.4916701 1.351122 2.162755 3.489659 0.9819807 1.362207 3.174613 0.7395112
##         [,24]   [,25]    [,26]    [,27]    [,28]   [,29]   [,30]    [,31]
## [1,] 1.313937 4.85182 4.799774 2.400799 1.313937 1.46478 4.85182 2.973117
##         [,32]   [,33]    [,34]    [,35]    [,36]    [,37]    [,38]    [,39]
## [1,] 2.288505 5.71564 6.564393 5.496648 2.941494 15.86808 10.17545 2.504134
##         [,40]    [,41]
## [1,] 5.005412 4.189847

Berdasarkan plot residual data setiap kecamatan di Provinsi DKI Jakarta, secara umum terlihat residual tersebar di sekitar nol tanpa tren. Berdasarkan QQ Plot, terlihat pada awal dan akhir data nilainya cukup jauh dari garis. Sedangkan pada histogram sekilas teradapat beberapa data residual yang tidak berdistribusi normal dan berdistribusi normal. Untuk menguji kenormalan digunakan Uji Shapiro-Wilk diperoleh terdapat 14 kecamatan yang memiliki p-value < 0.5. Artinya untuk uji kenormalan Shapiro-Wilk 𝐻0 ditolak, sehingga tidak berdistribusi normal. Selanjutnya, pada grafik residual terdapat beberapa ACF yang tidak terdapat lag yang melebihi batas signifikansi sehingga dapat diasumsikan tidak ada korelasi antar residual. Untuk pembuktian lebih lanjut, gunakan Uji Ljung-Box diperoleh terdapat 9 kecamatan yang memiliki p-value < 0.05, sehingga 𝐻0 ditolak. Artinya, terdapat korelasi antar residual. Karena data tidak memenuhi 3 asumsi tersebut mengakibatkan beberapa kecamatan tidak terpenuhinya asumsi residual dalam pemodelan.

Forecasting

Selanjutnya diperiksa prediksi berdasarkan model terpilih.

prediksi1 <- as.matrix(predict(fitmodel1))
prediksi1
##       GAMBIR SAWAH BESAR KEMAYORAN     SENEN CEMPAKA PUTIH   MENTENG
## 3  2.8549363    4.004409  6.664631 3.9167367     2.9694178 3.0313741
## 4  1.8400642    1.293516  3.565381 1.3502973     1.6485782 1.1919346
## 5  4.2410731    5.704018  9.622198 5.6962736     4.3685271 3.3933974
## 6  2.3186985    3.950288  7.489318 2.8363397     2.2209601 2.6533978
## 7  3.2632015    3.998804  8.090947 4.3657773     3.3731922 2.9914918
## 8  3.9336149    5.354288  9.040662 3.9618965     2.9860048 3.0143576
## 9  2.7958075    3.647132  6.851337 4.0112899     3.0041467 2.9957459
## 10 4.4869438    5.344274 10.996484 5.1510028     4.0554626 2.9431013
## 11 3.2425986    5.663947  8.184116 4.3505631     3.5226211 4.1153927
## 12 3.1253940    3.643918  7.289895 4.0719733     3.0264354 2.5757603
## 13 4.4279348    5.698338 10.054199 5.4603305     4.4079211 3.3529834
## 14 6.9802104    8.641526 17.083517 7.7739356     5.6781236 5.9558636
## 15 4.8145438    6.606537 12.258909 6.6754581     5.1618691 3.9197793
## 16 4.0714224    5.356904  9.035851 4.9125030     2.9678628 3.4300891
## 17 4.5018159    7.055168 12.289870 6.0606397     5.1060997 4.7825407
## 18 5.1180179    6.644142 12.884570 7.0677396     4.6599817 4.5773556
## 19 4.7318811    6.649075 11.509412 5.2882027     4.6257711 3.6124520
## 20 3.9655781    6.001046 11.114557 5.3234401     3.9927432 4.4045645
## 21 5.1279726    7.355185 11.972452 6.2881590     5.3446834 4.0207388
## 22 2.8769448    3.644665  7.038917 3.7146634     2.6563533 2.9781977
## 23 3.7181821    5.048591  9.595945 4.8416315     3.7868150 3.3386257
## 24 4.8819821    6.003587 11.533021 5.9322604     4.9751196 4.0255247
## 25 3.5350647    4.295982  8.183665 4.3037264     3.2665741 2.6066026
## 26 3.1328901    4.355036  8.372093 4.2909815     3.3457201 3.4167950
## 27 4.3935129    5.347114 10.586347 5.4405731     4.4006643 2.9633083
## 28 3.6187806    5.652512  9.247938 4.5664831     3.6019274 4.0340329
## 29 3.9901652    4.648028  8.977263 4.9943550     2.9979266 2.6050073
## 30 3.8401841    5.357128  8.824662 4.9082693     4.3312065 3.4316844
## 31 4.1893204    4.994245 10.437685 5.1086656     3.6750136 2.9590542
## 32 2.9704955    4.000897  7.737653 3.9830651     2.9937799 3.0063812
## 33 4.3541736    6.348310 11.689536 6.4179933     4.3923708 3.9718165
## 34 1.3999558    2.306893  4.547906 2.0976851     1.5557950 1.6842401
## 35 3.6345860    5.051132  8.402682 5.1368468     3.7691914 3.7538255
## 36 2.9015318    2.643918  6.095759 2.7287759     1.6615367 1.5757603
## 37 2.9606607    4.353466  8.103189 4.3206176     3.3566053 3.4056280
## 38 3.1794856    3.642274  7.026675 3.7598232     2.6729402 2.5640615
## 39 2.2753751    2.991630  5.830768 3.1580591     2.0580543 1.9404425
## 40 2.3222104    2.349281  4.615641 2.3996471     2.3856324 1.3758492
## 41 1.9803303    2.352868  4.148663 2.3319075     1.9958533 2.4013739
## 42 1.0565502    1.998281  4.130737 2.0324586     1.0119219 0.5906497
## 43 1.2656602    1.998729  4.096632 2.0239911     1.3737105 1.3880798
## 44 0.9950826    1.000149  2.988632 0.9971775     0.9989633 1.0010635
## 45 2.1401463    2.348011  4.518137 2.4236382     1.0295455 0.9696895
## 46 1.5941936    1.653260  3.385232 1.5523707     1.9616427 2.0393505
## 47 1.0319632    1.999028  3.073895 2.0183461     0.6418397 0.5959673
## 48 1.3369627    1.996562  3.455610 2.0649171     1.3887424 1.3726586
## 49 0.9704955    1.000897  1.931789 0.9830651     0.9937799 1.0063812
## 50 0.9778716    1.352943  2.142978 1.3304963     0.9953349 1.0047859
## 51 0.8770647    1.003737  1.715789 0.9294379     0.9740829 1.0265882
## 52 2.0024587    2.999925  6.005684 3.0014112     2.0005183 1.9994682
##    TANAH ABANG JOHAR BARU PENJARINGAN TANJUNG PRIOK      KOJA CILINCING
## 3     4.764291   4.027718    2.291781      3.965075  3.346557  3.959386
## 4     2.643418   2.397090    7.836383     10.042121  8.715388 10.116358
## 5     7.488420   5.292059    7.004133     10.179357  8.104763 10.113519
## 6     4.699560   4.453935   11.400276     15.792042 13.296231 15.912431
## 7     6.294148   4.992483   10.000499     14.539161 11.764724 14.352033
## 8     5.892133   5.012684   14.104861     18.005888 15.050683 19.061973
## 9     5.031961   3.996242    7.000249      9.588697  7.543935  9.111224
## 10    7.657699   5.245080   16.490480     22.253132 18.886485 22.671268
## 11    5.672616   5.806597    7.936733      9.361298  7.878951  9.581213
## 12    5.203749   3.680693   11.739289     15.446228 13.109508 15.494183
## 13    6.792045   5.551703    6.677648      9.981900  7.844198  9.809491
## 14   12.101364   8.665660   19.130669     25.210574 21.167343 26.115113
## 15    8.783668   6.916796   14.483962     20.311762 16.099741 19.951608
## 16    5.982533   5.324475   16.756453     22.194404 18.675334 22.707101
## 17    9.239027   6.875707   18.883238     25.223877 20.840800 25.255125
## 18    8.731309   6.682102   17.329240     24.579974 19.468849 24.454619
## 19    8.697862   6.713109   22.069908     29.594367 24.033788 29.606108
## 20    7.944069   6.006577   22.117012     29.955262 24.262087 29.856099
## 21    9.074419   7.313669   22.182786     30.189388 25.191111 31.219102
## 22    4.933571   3.685391   18.325106     24.400617 19.923038 23.905893
## 23    7.360366   4.834366   20.994488     28.842919 23.439805 29.229175
## 24    8.578010   7.022550   17.702080     23.191351 19.649054 24.239760
## 25    6.281353   4.117246   16.511527     22.820643 18.454188 23.451274
## 26    6.312636   5.608077   18.112379     22.827185 18.951550 23.955340
## 27    7.505887   4.967584   16.247681     22.984953 18.870478 23.841625
## 28    6.514089   6.030067   14.248560     17.604399 14.679088 18.711691
## 29    5.984020   4.706532   17.468556     23.048663 18.771702 23.185217
## 30    5.970547   5.325884   11.283764     14.785500 12.239917 15.278779
## 31    7.307620   4.963826   16.638312     22.030999 17.619654 21.999298
## 32    5.721832   5.005637    9.593584     12.364384 10.699381 13.286715
## 33    8.441966   5.975101   19.731522     26.445791 21.664705 26.054385
## 34    2.928300   2.776530   12.203833     15.937783 13.758815 17.434315
## 35    6.224533   4.850339   16.157855     21.621659 18.180483 22.131180
## 36    3.973522   3.680693   11.801929     16.988878 13.904266 16.882940
## 37    6.166306   5.007517   14.515161     18.232164 15.353179 19.777553
## 38    4.831186   3.670358    8.232146     10.984080  8.862969 11.397237
## 39    4.677675   3.242731    7.502380     10.432925  8.995003 10.354171
## 40    3.390030   2.276556   11.297671     14.219952 11.807011 15.649017
## 41    3.198266   3.299106    5.093709      7.953953  6.250824  7.407120
## 42    3.091887   1.693847    9.363694     11.223659 10.279971 12.688037
## 43    3.067916   2.287361    9.449636     13.996293 10.527040 13.525773
## 44    1.992010   2.000940    7.039087      8.362203  7.121658  8.698969
## 45    3.457946   1.973222   12.747306     18.625803 15.216148 18.609997
## 46    2.474138   3.034764    6.350037      8.149230  6.492618  8.123402
## 47    2.051936   1.698545    7.886872     10.454514  9.180839 10.581404
## 48    2.414000   2.273737    7.790028     10.218643  7.795749 10.200038
## 49    1.952059   1.005637    6.562265      8.593059  8.022526  8.592336
## 50    1.964044   1.299576   10.034954     14.001963 10.575846 14.020658
## 51    1.800247   1.023490    6.741167      8.963113  7.770712  8.938729
## 52    4.003995   2.999530    8.964797     11.228457  9.880220 12.303326
##    KELAPA GADING CENGKARENG GROGOL PETAMBURAN TAMAN SARI   TAMBORA KEBON JERUK
## 3       2.253583   8.976708          3.254428  1.6980906  4.424810    5.394269
## 4       7.783156  12.425845          5.364636  3.2301195  6.282808    8.224904
## 5       7.086156  17.801411          7.712209  3.8416703  8.762328   10.764393
## 6      11.199713  10.605395          3.866505  2.6197744  5.128325    7.263571
## 7      10.170084  15.850568          7.949533  4.2083650  8.763623   10.449619
## 8      13.030059  11.443872          4.328944  2.7677050  5.468578    7.640956
## 9       6.538068  10.425284          4.626813  2.1909614  5.505435    6.290065
## 10     16.599030  20.983655          9.553254  5.4063310 10.393594   12.649485
## 11      6.070409  17.271647          5.974230  4.0072537  8.466968   10.429118
## 12     11.208349  18.351214          8.422852  4.1109480 10.069755   11.185156
## 13      6.907595  14.818378          6.193276  3.3541202  7.113522    9.431843
## 14     17.813646  24.065172         10.801459  6.3541202 12.855262   14.562353
## 15     13.702426  20.450137          8.296951  5.0246573 10.477910   12.588672
## 16     15.616000  22.573034          9.855625  4.8651221 11.915200   13.774908
## 17     17.881558  18.151504          8.051230  4.2214177  9.030090   11.079871
## 18     16.493535  15.947540          6.719958  4.2779795  8.807391    9.565795
## 19     21.020040  17.246234          7.566268  3.9608419  9.222627   10.195671
## 20     20.203484  19.656794          7.663307  4.9695437  9.733605   11.818663
## 21     21.590393  16.361233          6.605092  3.7415996  8.699412   10.597390
## 22     16.954354  16.652540          7.399565  4.2627513  8.303324   10.279361
## 23     20.142664  14.880917          6.256148  3.2392996  7.397698    9.529867
## 24     16.600413  13.916241          6.192318  3.0691362  7.181595    8.956246
## 25     16.460819  13.951794          5.983700  2.9847718  6.990426    8.974586
## 26     16.494218  13.745198          5.913841  2.9195083  6.949394    8.865671
## 27     15.923182  15.475171          6.160675  4.1501061  8.094374    9.250505
## 28     13.071252  13.435864          5.850968  2.6872133  6.665218    8.767647
## 29     16.363530  14.095851          5.990686  3.1648560  7.241776    8.985478
## 30     10.166314  13.552375          5.848640  2.8585957  6.911097    8.764017
## 31     15.726378  11.530264          5.179304  3.1675097  6.105316    7.279549
## 32      8.654283  13.287553          6.276148  2.9738946  7.230834    8.217454
## 33     18.753097  20.118192          7.819325  5.1152989  9.825244   12.061907
## 34     10.999157  13.082578          5.035537  3.3200404  7.048997    7.922491
## 35     15.274465  14.140364          6.785159  3.3388921  7.598441    8.667450
## 36     11.943221  14.598008          6.118760  3.2845058  7.317001    9.315666
## 37     12.923864  11.766418          4.962742  2.9651928  5.978116    6.811402
## 38      7.918728   9.749512          4.474081  2.1588079  5.347091    6.526048
## 39      7.687412  12.141485          5.564898  3.4172083  6.400433    7.537128
## 40      9.861519  10.028667          3.789053  1.9134602  4.807463    6.014710
## 41      5.649830   9.068305          4.285463  2.1561542  5.236305    6.101466
## 42      7.880445   8.281788          4.053558  2.0500354  4.031458    5.083502
## 43      9.981074   8.240469          4.039587  2.0369827  4.270498    5.192229
## 44      5.643150   5.986227          1.995343  0.9956491  2.997265    2.992739
## 45     13.295618   8.639327          4.740915  2.2975585  4.325208    5.467960
## 46      5.817257   7.243601          2.219498  1.6654588  3.651541    4.470322
## 47      7.797629   8.089525          3.334364  2.0282809  4.017781    5.047197
## 48      6.854839   7.316781          3.107117  2.1000707  4.062916    4.167004
## 49      7.013360   6.040759          2.972057  0.9738946  2.983587    4.086944
## 50      9.556994   8.061418          3.979042  2.1539788  4.234937    4.967325
## 51      6.696589   7.408878          2.579477  1.7176696  3.684367    4.687964
## 52      7.904938   8.006887          3.306420  2.0021755  4.001368    5.003631
##    KALI DERES  PALMERAH KEMBANGAN     TEBET SETIA BUDI MAMPANG PRAPATAN
## 3    6.259679  3.503951  4.461393  8.650209   3.760787         6.049147
## 4   10.395603  5.239648  6.261895  8.126478   4.259332         4.978342
## 5   13.744506  6.839335  8.807954  8.997904   4.995732         6.166048
## 6    8.892923  4.417788  5.178332  8.406595   4.782735         5.907255
## 7   12.526754  6.393133  8.654454  9.108273   3.990245         5.986672
## 8    9.597052  4.757959  5.529125  8.817289   4.291645         6.022491
## 9    8.263377  4.196566  5.430659  6.054136   2.995123         3.993336
## 10  16.990617  8.433514 10.433343 10.575678   5.209949         6.254629
## 11  12.587507  6.770954  8.506377  5.729411   3.581932         4.837000
## 12  14.476944  8.122064  9.107948  5.196723   3.244090         4.129397
## 13  11.712012  6.198653  7.382543  4.462734   2.224581         3.102741
## 14  18.916622 10.553491 11.589406  9.512200   4.224581         6.102741
## 15  15.748579  8.790101  9.730172  7.833013   3.577054         5.658457
## 16  17.544556  9.851609 10.868769  8.580442   5.037800         6.051645
## 17  14.161609  7.052655  9.046566  7.148875   2.711404         3.981674
## 18  12.761822  6.647141  8.515324  9.225887   5.521103         6.303775
## 19  13.072385  7.134338  8.168763  9.977125   4.460607         5.671235
## 20  14.794853  7.789073  9.970367 10.954727   5.008535         7.011662
## 21  12.508901  6.729238  8.503726  8.785550   4.023777         5.860607
## 22  12.505791  7.275549  8.293645  7.178518   3.250187         4.137727
## 23  11.910350  6.263275  7.439693  9.645445   5.208120         6.252130
## 24  10.749704  6.062535  7.105264  9.774113   4.478897         6.696225
## 25  10.948579  5.983246  6.985184 12.002096   6.004268         7.833952
## 26  10.728203  5.911444  6.921685  9.848550   4.747374         5.858941
## 27  12.506865  6.165145  7.146048 12.367996   6.233116         8.286282
## 28  10.427560  5.846822  6.864535 13.665840   6.763835         8.709553
## 29  11.072922  5.990426  6.991533 16.071863   7.727255         9.831453
## 30  10.522519  5.844428  6.862419 13.659073   6.764445         8.882265
## 31   8.565631  5.184293  5.162981 14.422132   7.228239         9.107739
## 32  10.218765  6.148698  7.388326  9.918795   5.007316         7.009996
## 33  15.184721  7.949432  9.698456 16.160791   8.518055        10.299610
## 34  10.364558  5.278970  6.055567 16.261435   7.267729        10.611810
## 35  10.865201  5.536737  6.781452 16.563762   7.953665         9.764813
## 36  11.579249  6.299483  7.314811 15.295654   6.968907         9.129397
## 37   8.780161  4.784286  5.759271 12.842261   6.284938         8.185207
## 38   7.740858  4.352138  5.361377  9.395064   4.230678         5.111071
## 39  10.027347  5.445481  6.443926  7.560048   3.482084         4.422343
## 40   7.089224  3.918317  4.877803  8.171751   4.250797         5.138560
## 41   7.145843  4.158272  5.189930  6.995329   2.729694         4.834785
## 42   7.168955  4.055048  4.048683  6.106177   3.261161         3.980841
## 43   6.124880  3.040688  4.242846  5.065574   1.989636         3.157719
## 44   4.087613  2.172632  2.995767  3.937000   2.276403         3.173545
## 45   7.623324  4.313843  4.327511  6.336257   2.965249         3.952519
## 46   5.149491  2.468050  3.636506  4.598169   2.769932         3.889762
## 47   6.197801  3.208533  4.027516  5.038506   1.992074         2.989171
## 48   6.337910  3.110097  4.097365  5.311285   2.247139         3.133562
## 49   4.911850  2.971279  2.974600  6.918795   3.007316         4.009996
## 50   6.036192  2.978459  4.187813  8.038028   3.730303         4.835618
## 51   5.530402  2.880329  3.687306  9.711113   4.755300         5.869770
## 52   6.007346  3.002393  4.002117  7.105699   2.724207         3.827288
##    PASAR MINGGU KEBAYORAN LAMA  CILANDAK KEBAYORAN BARU  PANCORAN JAGAKARSA
## 3     10.611775      10.578782  6.668641       6.049147  5.858398 10.611775
## 4     10.494588      10.522797  7.218953       4.978342  5.153460 10.494588
## 5     12.266633      12.279868  8.023844       6.166048  6.160287 12.266633
## 6     11.727808      11.689597  7.611211       5.907255  5.871333 11.727808
## 7     10.948430      10.950749  8.054500       5.986672  5.994251 10.948430
## 8     12.376219      12.384526  7.908031       6.022491  6.009702 12.376219
## 9      6.685020       6.673960  5.027250       3.993336  3.997125  6.685020
## 10    14.101098      14.177710  9.560054       6.254629  7.287157 14.101098
## 11     8.964251       8.859474  5.000063       4.837000  4.589566  8.964251
## 12     7.703204       7.747258  5.369305       4.129397  4.307279  7.703204
## 13     5.600064       5.648756  4.347914       3.102741  3.132978  5.600064
## 14    12.310870      12.347341  8.347914       6.102741  6.132978 12.310870
## 15     9.649271       9.533434  7.027313       5.658457  5.586692  9.649271
## 16    12.489028      12.492262  7.788813       6.051645  6.022278 12.489028
## 17     8.639897       8.630865  6.074937       3.981674  4.992095  8.639897
## 18    12.712874      12.756492  8.293891       6.303775  6.145555 12.712874
## 19    12.190433      12.151162  8.808297       5.671235  6.843665 12.190433
## 20    13.755929      13.741680  9.887117       7.011662  6.842228 13.755929
## 21    10.836507      10.818634  7.801961       5.860607  6.014014 10.836507
## 22     9.735435       9.778040  6.270047       4.137727  5.148070  9.735435
## 23    12.223845      12.264231  8.505078       6.252130  6.123277 12.223845
## 24    12.287126      12.243508  8.706109       6.696225  6.854445 12.287126
## 25    14.733367      14.720132  9.910961       7.833952  7.839713 14.733367
## 26    12.540867      12.511063  8.808774       5.858941  6.850493 12.540867
## 27    15.355993      15.390436 10.300226       8.286282  8.138009 15.355993
## 28    17.627891      17.594173 11.716805       8.709553  8.860194 17.627891
## 29    19.145309      19.108068 13.855984       9.831453 10.838635 19.145309
## 30    16.631114      16.597251 11.648203       8.882265  8.697751 16.631114
## 31    18.619403      18.667225 12.392672       9.107739  9.297937 18.619403
## 32    12.749483      12.735523  8.959125       7.009996  7.004312 12.749483
## 33    21.275147      22.343931 14.376117      10.299610 11.306561 21.275147
## 34    20.468777      20.059641 14.152868      10.611810 11.403767 20.468777
## 35    19.176654      19.464644 13.193679       9.764813 10.809889 19.176654
## 36    19.414010      19.445843 13.304109       9.129397 10.144477 19.414010
## 37    17.340764      17.350666 10.945500       8.185207  9.168552 17.340764
## 38    11.343101      11.378123  7.379047       5.111071  6.136572 11.343101
## 39     9.374177       9.463734  6.642281       4.422343  4.448163  9.374177
## 40    10.738659      10.781118  7.201445       5.138560  5.311232 10.738659
## 41     8.447396       8.421796  5.907555       4.834785  4.840072  8.447396
## 42     7.215063       7.230617  5.143539       3.980841  3.991736  7.215063
## 43     6.523596       6.550501  4.123102       3.157719  3.156694  6.523596
## 44     5.295641       5.307571  4.058383       3.173545  3.163521  5.295641
## 45     8.105476       8.125959  5.194156       3.952519  3.979518  8.105476
## 46     6.370928       6.323540  4.682743       3.889762  3.863788  6.370928
## 47     6.247294       6.261399  4.044281       2.989171  2.995329  6.247294
## 48     6.140931       6.159819  4.221883       3.133562  3.146274  6.140931
## 49     9.038677       9.036938  5.959125       4.009996  5.004312  9.038677
## 50     9.161425       9.123459  6.838953       4.835618  4.677629  9.161425
## 51    12.871962      12.852494  8.764492       5.869770  7.017966 12.871962
## 52     7.129193       7.092677  5.873015       3.827288  3.674036  7.129193
##    PESANGGRAHAN  MATRAMAN PULO GADUNG JATINEGARA KRAMAT JATI PASAR REBO
## 3      7.649386  7.529979   11.850556  11.491247   11.066250   7.583882
## 4      7.329305  5.281661    9.159306   9.550747    9.530127   6.742696
## 5      9.160778  8.421910   12.364959  13.407259   11.873496   7.930726
## 6      8.626139  6.883778   11.437795  11.056866   11.536102   7.478380
## 7      8.010332  8.341066   13.235213  14.779960   12.301218   9.303428
## 8      9.138823  7.757744   11.457493  11.881897   11.897574   7.343663
## 9      5.848908  5.928138   10.350543  10.389980    8.855424   7.382598
## 10    10.537868 12.008429   17.389210  18.735787   17.837404  12.402865
## 11     6.234843 10.040511   17.401338  17.995629   15.608296  11.376885
## 12     5.501706  8.026671   12.264773  13.118773   12.668697   8.957057
## 13     4.366112  5.708804   10.132817  10.206905    8.861503   6.563913
## 14     9.209854  7.708804   11.666945  13.206905   12.451874   8.563913
## 15     8.083751 11.907806   20.081243  21.026666   20.005943  14.144789
## 16     8.959964 10.617771   17.632697  18.373814   15.987872  12.304727
## 17     7.014206 10.317591   16.751098  17.563440   16.012045  11.320513
## 18     9.343511 11.053620   18.239767  19.227033   17.313284  12.448515
## 19     9.675861 10.161689   15.259492  16.311021   15.325297  11.178133
## 20    10.834702 11.610547   18.599445  19.826540   18.433749  12.600317
## 21     8.818558  9.865536   14.630487  15.617456   14.524068  10.924187
## 22     7.338991  8.116498   12.340680  13.347986   12.439788   8.056020
## 23     9.383547  8.981481   14.811834  15.683950   13.783188  10.296713
## 24     9.656489  7.946380   12.294361  13.244755   12.686716   8.551485
## 25    11.839222 11.547668   19.032659  20.177376   17.716875  12.531043
## 26     9.663592  6.877992   11.204037  11.998263   10.307183   7.980857
## 27    12.357072 10.834561   17.334644  18.448810   17.704882  11.702461
## 28    12.646157 10.605314   16.525020  17.521218   14.795128  11.709826
## 29    14.841159 12.551142   20.591792  22.540904   21.072288  14.577817
## 30    12.645511 10.614297   17.073564  17.482074   15.222829  11.257954
## 31    13.362238 11.277910   18.287569  19.782367   17.969936  12.623291
## 32     9.992251 11.107792   18.172995  19.207347   17.216864  12.118756
## 33    15.502998 12.523917   19.235941  20.084216   18.042182  13.475496
## 34    16.119912 11.404775   18.273935  19.587257   18.584280  12.590597
## 35    14.736561  9.286893   14.301986  14.271434   12.807267   9.171419
## 36    14.345448 11.511461   18.662391  20.231620   18.439808  12.880595
## 37    13.145926  6.174145   10.367169   9.635405    8.927671   6.773035
## 38     8.203397  6.283420   10.742852  11.436117   10.222965   7.124645
## 39     6.853612  4.963516    7.783002   7.649392    7.747044   4.815152
## 40     8.338345  3.640692    5.889224   6.837053    5.277119   4.065917
## 41     6.682318  4.556651    7.047075   7.666443    7.325317   4.540939
## 42     6.171110  3.793398    5.668427   6.602584    5.584343   3.772385
## 43     5.167235  3.847294    5.754924   6.706258    5.692775   3.831763
## 44     4.154966  3.017965    4.028832   4.034558    4.036144   3.019793
## 45     6.193065  2.972775    5.110021   5.599734    5.150635   2.897680
## 46     4.639699  4.664720    7.600927   7.750431    6.746960   5.732326
## 47     5.164652  2.398436    3.880844   3.718951    3.174693   1.947811
## 48     5.029704  4.071585    6.268599   6.261591    5.349428   4.468307
## 49     6.992251  2.623003    4.707122   5.679136    4.626494   3.656987
## 50     7.681673  4.565634    7.595618   7.155511    7.162648   5.089067
## 51     9.811455  3.964346    5.789066   6.335736    5.722861   4.033046
## 52     5.688130  4.991017    8.451456   9.510933    8.572298   6.451872
##       CAKUNG DUREN SAWIT   MAKASAR   CIRACAS  CIPAYUNG
## 3  19.002058   14.791072  7.695822 10.267786  9.732796
## 4  14.854057   12.413425  6.693367  8.686433  7.235385
## 5  20.800921   16.382078  7.917445 11.359348 10.354746
## 6  18.445076   15.523249  7.550180 10.258186  9.296549
## 7  21.573486   17.179033  9.381514 12.250806 10.242964
## 8  19.215583   15.529132  7.178005 10.438088  9.893659
## 9  16.286743   13.359517  7.475862  9.347288  7.900638
## 10 29.251676   23.206024 11.308297 16.597091 14.554408
## 11 28.639013   22.955624 11.708154 16.066920 14.603379
## 12 20.711199   16.849410  8.398527 11.384926 10.366566
## 13 15.813801   13.367484  6.731765  9.217847  7.735871
## 14 20.813801   16.367484  8.731765 11.774077  9.735871
## 15 32.837017   27.095155 13.324438 18.189286 16.712459
## 16 28.188793   22.538739 11.450358 16.085118 14.119926
## 17 28.466231   22.423663 11.170330 16.290904 14.285066
## 18 28.764826   22.997096 12.004119 15.864877 13.845516
## 19 26.943778   21.946092 11.212285 14.660855 13.665253
## 20 29.820511   24.395852 12.735321 17.056383 14.615572
## 21 26.007738   20.799859 10.889739 13.582811 13.042702
## 22 19.941721   16.155020  8.086674 11.393069  9.932457
## 23 24.153680   20.218346 10.413338 14.004680 11.958836
## 24 21.257358   16.922900  8.425670 11.247583 10.712796
## 25 30.154710   25.237928 12.652766 16.971961 14.528630
## 26 18.512659   14.594730  7.725730 10.671151  9.134485
## 27 29.167590   24.223334 11.896875 15.942921 13.909755
## 28 26.683872   20.743867 10.614368 15.440548 13.469832
## 29 34.612175   28.090242 15.047174 19.604471 16.607993
## 30 27.220235   22.226426 10.485739 15.008838 13.482252
## 31 30.987610   24.422843 12.802527 17.846439 15.368705
## 32 29.814340   24.270727 12.141523 16.700953 14.707355
## 33 31.660658   25.804289 13.374940 17.360806 15.341726
## 34 30.399679   24.831763 12.663997 17.401451 15.458612
## 35 22.523973   18.445404  9.244109 12.970959 10.939437
## 36 30.644645   25.549420 13.109160 17.716236 14.691631
## 37 15.981976   13.120958  6.478064  9.417885  8.873659
## 38 17.044323   13.673093  7.419912  9.782219  7.860074
## 39 12.614231   10.173225  4.819540  6.980560  5.933995
## 40 10.478084    8.637579  4.098467  5.961359  4.944878
## 41 11.179980    8.720487  4.664560  6.540252  5.541050
## 42  9.907684    8.021109  3.728747  5.722614  4.714334
## 43  9.570400    7.616470  3.799509  5.794975  4.788855
## 44  7.050541    5.045121  3.023587  4.024121  3.024841
## 45  8.026299    7.334053  2.897976  5.200104  4.175422
## 46 12.381117    9.589479  5.872726  6.448690  5.477411
## 47  6.204759    4.626709  1.706261  3.399447  3.396848
## 48  9.304275    8.582219  4.597917  5.332767  4.870356
## 49  8.814340    6.190723  3.571312  4.700953  3.707355
## 50 11.227435    9.743047  5.106142  6.108542  5.553471
## 51 10.285715    8.048025  4.019468  5.159244  5.179325
## 52 14.463637   11.517441  6.558417  8.431709  6.987580
plot(fitmodel1, n_predict = 30)

GSTAR(2;1,1)

Estimasi parameter setiap kecamatan di Provinsi DKI Jakarta

fitmodel2 <- gstar(data, w1, p = 2, d = 1, est = "OLS")
summary(fitmodel2)
## 
## Coefficients: 
##                            Estimate    Std.Err t value Pr(>|t|)
## psi10(GAMBIR)            -3.803e-01  3.261e+02  -0.001    0.999
## psi10(SAWAH BESAR)       -4.794e-01  1.656e+02  -0.003    0.998
## psi10(KEMAYORAN)         -3.510e-01  5.496e+01  -0.006    0.995
## psi10(SENEN)             -4.665e-01  2.073e+02  -0.002    0.998
## psi10(CEMPAKA PUTIH)     -5.301e-01  2.801e+02  -0.002    0.998
## psi10(MENTENG)           -5.511e-01  3.269e+02  -0.002    0.999
## psi10(TANAH ABANG)       -3.878e-01  9.869e+01  -0.004    0.997
## psi10(JOHAR BARU)        -3.922e-01  1.615e+02  -0.002    0.998
## psi10(PENJARINGAN)       -3.707e-01  5.443e+01  -0.007    0.995
## psi10(TANJUNG PRIOK)     -3.230e-01  3.036e+01  -0.011    0.992
## psi10(KOJA)              -3.348e-01  4.702e+01  -0.007    0.994
## psi10(CILINCING)         -3.533e-01  2.686e+01  -0.013    0.990
## psi10(KELAPA GADING)     -3.135e-01  6.477e+01  -0.005    0.996
## psi10(CENGKARENG)        -2.843e-01  5.458e+01  -0.005    0.996
## psi10(GROGOL PETAMBURAN) -4.886e-01  2.506e+02  -0.002    0.998
## psi10(TAMAN SARI)        -3.565e-01  5.902e+02  -0.001    1.000
## psi10(TAMBORA)           -3.520e-01  2.042e+02  -0.002    0.999
## psi10(KEBON JERUK)       -2.804e-01  1.545e+02  -0.002    0.999
## psi10(KALI DERES)        -2.726e-01  9.241e+01  -0.003    0.998
## psi10(PALMERAH)          -2.941e-01  2.802e+02  -0.001    0.999
## psi10(KEMBANGAN)         -4.134e-01  2.026e+02  -0.002    0.998
## psi10(TEBET)              2.508e-02  1.700e+02   0.000    1.000
## psi10(SETIA BUDI)        -2.223e-01  4.266e+02  -0.001    1.000
## psi10(MAMPANG PRAPATAN)  -1.100e-01  3.538e+02   0.000    1.000
## psi10(PASAR MINGGU)      -2.377e-01  8.325e+01  -0.003    0.998
## psi10(KEBAYORAN LAMA)    -2.507e-01  8.577e+01  -0.003    0.998
## psi10(CILANDAK)          -3.434e-02  1.976e+02   0.000    1.000
## psi10(KEBAYORAN BARU)    -1.100e-01  3.538e+02   0.000    1.000
## psi10(PANCORAN)          -1.273e-01  2.944e+02   0.000    1.000
## psi10(JAGAKARSA)         -2.377e-01  8.325e+01  -0.003    0.998
## psi10(PESANGGRAHAN)      -1.106e-01  1.525e+02  -0.001    0.999
## psi10(MATRAMAN)          -5.251e-01  2.092e+02  -0.003    0.998
## psi10(PULO GADUNG)       -5.388e-01  6.873e+01  -0.008    0.994
## psi10(JATINEGARA)        -6.171e-01  6.011e+01  -0.010    0.992
## psi10(KRAMAT JATI)       -6.744e-01  8.376e+01  -0.008    0.994
## psi10(PASAR REBO)        -5.723e-01  1.569e+02  -0.004    0.997
## psi10(CAKUNG)            -5.135e-01  2.808e+01  -0.018    0.985
## psi10(DUREN SAWIT)       -5.989e-01  4.377e+01  -0.014    0.989
## psi10(MAKASAR)           -6.942e-01  1.734e+02  -0.004    0.997
## psi10(CIRACAS)           -5.010e-01  8.618e+01  -0.006    0.995
## psi10(CIPAYUNG)          -4.433e-01  1.211e+02  -0.004    0.997
## psi20(GAMBIR)            -2.527e-01  3.139e+02  -0.001    0.999
## psi20(SAWAH BESAR)       -2.950e-01  1.657e+02  -0.002    0.999
## psi20(KEMAYORAN)         -2.907e-01  5.415e+01  -0.005    0.996
## psi20(SENEN)             -2.136e-01  2.039e+02  -0.001    0.999
## psi20(CEMPAKA PUTIH)     -3.207e-01  2.832e+02  -0.001    0.999
## psi20(MENTENG)           -3.705e-01  3.364e+02  -0.001    0.999
## psi20(TANAH ABANG)       -2.256e-01  9.782e+01  -0.002    0.998
## psi20(JOHAR BARU)        -2.899e-01  1.680e+02  -0.002    0.999
## psi20(PENJARINGAN)        2.974e-01  5.287e+01   0.006    0.996
## psi20(TANJUNG PRIOK)      3.559e-01  2.909e+01   0.012    0.990
## psi20(KOJA)               3.503e-01  4.498e+01   0.008    0.994
## psi20(CILINCING)          3.124e-01  2.612e+01   0.012    0.990
## psi20(KELAPA GADING)      4.357e-01  6.065e+01   0.007    0.994
## psi20(CENGKARENG)        -4.115e-01  5.338e+01  -0.008    0.994
## psi20(GROGOL PETAMBURAN) -3.062e-01  2.437e+02  -0.001    0.999
## psi20(TAMAN SARI)        -4.293e-01  5.745e+02  -0.001    0.999
## psi20(TAMBORA)           -2.593e-01  1.998e+02  -0.001    0.999
## psi20(KEBON JERUK)       -4.355e-01  1.497e+02  -0.003    0.998
## psi20(KALI DERES)        -3.881e-01  9.243e+01  -0.004    0.997
## psi20(PALMERAH)          -2.822e-01  2.731e+02  -0.001    0.999
## psi20(KEMBANGAN)         -4.723e-01  2.031e+02  -0.002    0.998
## psi20(TEBET)              1.800e-01  1.821e+02   0.001    0.999
## psi20(SETIA BUDI)         1.809e-01  4.436e+02   0.000    1.000
## psi20(MAMPANG PRAPATAN)   6.296e-02  3.483e+02   0.000    1.000
## psi20(PASAR MINGGU)       2.423e-01  8.985e+01   0.003    0.998
## psi20(KEBAYORAN LAMA)     2.838e-01  9.295e+01   0.003    0.998
## psi20(CILANDAK)           1.511e-01  2.135e+02   0.001    0.999
## psi20(KEBAYORAN BARU)     6.296e-02  3.483e+02   0.000    1.000
## psi20(PANCORAN)           1.561e-01  3.277e+02   0.000    1.000
## psi20(JAGAKARSA)          2.423e-01  8.985e+01   0.003    0.998
## psi20(PESANGGRAHAN)       1.612e-01  1.609e+02   0.001    0.999
## psi20(MATRAMAN)          -2.415e-01  1.952e+02  -0.001    0.999
## psi20(PULO GADUNG)       -2.448e-01  6.337e+01  -0.004    0.997
## psi20(JATINEGARA)        -3.255e-01  5.773e+01  -0.006    0.996
## psi20(KRAMAT JATI)       -2.454e-01  7.850e+01  -0.003    0.998
## psi20(PASAR REBO)        -3.289e-01  1.451e+02  -0.002    0.998
## psi20(CAKUNG)            -2.290e-01  2.603e+01  -0.009    0.993
## psi20(DUREN SAWIT)       -2.454e-01  4.098e+01  -0.006    0.995
## psi20(MAKASAR)           -2.822e-01  1.620e+02  -0.002    0.999
## psi20(CIRACAS)           -2.623e-01  8.174e+01  -0.003    0.997
## psi20(CIPAYUNG)          -1.661e-01  1.069e+02  -0.002    0.999
## psi11(GAMBIR)            -1.071e-01  1.038e+02  -0.001    0.999
## psi11(SAWAH BESAR)       -2.235e-02  1.002e+02   0.000    1.000
## psi11(KEMAYORAN)         -2.392e-01  1.084e+02  -0.002    0.998
## psi11(SENEN)             -7.790e-02  9.909e+01  -0.001    0.999
## psi11(CEMPAKA PUTIH)     -2.879e-02  9.088e+01   0.000    1.000
## psi11(MENTENG)            1.943e-02  8.788e+01   0.000    1.000
## psi11(TANAH ABANG)       -1.742e-01  1.098e+02  -0.002    0.999
## psi11(JOHAR BARU)        -7.040e-03  9.911e+01   0.000    1.000
## psi11(PENJARINGAN)       -1.836e-02  1.816e+02   0.000    1.000
## psi11(TANJUNG PRIOK)     -1.955e-01  2.011e+02  -0.001    0.999
## psi11(KOJA)              -1.265e-01  2.040e+02  -0.001    1.000
## psi11(CILINCING)         -1.046e-01  1.852e+02  -0.001    1.000
## psi11(KELAPA GADING)     -1.745e-01  2.055e+02  -0.001    0.999
## psi11(CENGKARENG)        -3.395e-02  1.921e+02   0.000    1.000
## psi11(GROGOL PETAMBURAN)  2.719e-02  1.749e+02   0.000    1.000
## psi11(TAMAN SARI)        -1.474e-02  1.797e+02   0.000    1.000
## psi11(TAMBORA)            9.850e-03  1.749e+02   0.000    1.000
## psi11(KEBON JERUK)       -1.390e-02  1.835e+02   0.000    1.000
## psi11(KALI DERES)        -8.044e-02  1.934e+02   0.000    1.000
## psi11(PALMERAH)          -3.449e-02  1.617e+02   0.000    1.000
## psi11(KEMBANGAN)          6.960e-02  1.709e+02   0.000    1.000
## psi11(TEBET)             -2.965e-01  2.519e+02  -0.001    0.999
## psi11(SETIA BUDI)        -1.581e-02  1.850e+02   0.000    1.000
## psi11(MAMPANG PRAPATAN)  -4.358e-02  2.200e+02   0.000    1.000
## psi11(PASAR MINGGU)       8.823e-03  2.360e+02   0.000    1.000
## psi11(KEBAYORAN LAMA)     4.531e-04  2.491e+02   0.000    1.000
## psi11(CILANDAK)          -2.104e-01  2.363e+02  -0.001    0.999
## psi11(KEBAYORAN BARU)    -4.358e-02  2.200e+02   0.000    1.000
## psi11(PANCORAN)          -3.414e-02  2.081e+02   0.000    1.000
## psi11(JAGAKARSA)          8.823e-03  2.360e+02   0.000    1.000
## psi11(PESANGGRAHAN)      -1.211e-01  2.319e+02  -0.001    1.000
## psi11(MATRAMAN)           3.672e-01  2.428e+02   0.002    0.999
## psi11(PULO GADUNG)        6.609e-01  1.931e+02   0.003    0.997
## psi11(JATINEGARA)         7.863e-01  2.070e+02   0.004    0.997
## psi11(KRAMAT JATI)        8.295e-01  2.397e+02   0.003    0.997
## psi11(PASAR REBO)         4.931e-01  2.272e+02   0.002    0.998
## psi11(CAKUNG)             1.037e+00  2.281e+02   0.005    0.996
## psi11(DUREN SAWIT)        9.977e-01  2.276e+02   0.004    0.997
## psi11(MAKASAR)            5.809e-01  2.192e+02   0.003    0.998
## psi11(CIRACAS)            5.330e-01  2.180e+02   0.002    0.998
## psi11(CIPAYUNG)           4.726e-01  2.255e+02   0.002    0.998
## psi21(GAMBIR)            -1.670e-01  1.019e+02  -0.002    0.999
## psi21(SAWAH BESAR)       -1.973e-01  9.600e+01  -0.002    0.998
## psi21(KEMAYORAN)         -3.964e-01  1.049e+02  -0.004    0.997
## psi21(SENEN)             -1.679e-01  9.436e+01  -0.002    0.999
## psi21(CEMPAKA PUTIH)     -1.791e-01  8.563e+01  -0.002    0.998
## psi21(MENTENG)           -1.052e-01  8.227e+01  -0.001    0.999
## psi21(TANAH ABANG)       -3.605e-01  1.041e+02  -0.003    0.997
## psi21(JOHAR BARU)        -2.419e-01  9.239e+01  -0.003    0.998
## psi21(PENJARINGAN)       -7.023e-01  1.775e+02  -0.004    0.997
## psi21(TANJUNG PRIOK)     -1.164e+00  1.962e+02  -0.006    0.995
## psi21(KOJA)              -9.089e-01  1.965e+02  -0.005    0.996
## psi21(CILINCING)         -1.106e+00  1.822e+02  -0.006    0.995
## psi21(KELAPA GADING)     -9.419e-01  1.954e+02  -0.005    0.996
## psi21(CENGKARENG)         2.590e-01  1.854e+02   0.001    0.999
## psi21(GROGOL PETAMBURAN)  7.512e-02  1.555e+02   0.000    1.000
## psi21(TAMAN SARI)         5.472e-02  1.746e+02   0.000    1.000
## psi21(TAMBORA)            6.895e-02  1.702e+02   0.000    1.000
## psi21(KEBON JERUK)        1.957e-01  1.793e+02   0.001    0.999
## psi21(KALI DERES)         1.863e-01  1.843e+02   0.001    0.999
## psi21(PALMERAH)           2.635e-02  1.557e+02   0.000    1.000
## psi21(KEMBANGAN)          1.470e-01  1.624e+02   0.001    0.999
## psi21(TEBET)             -3.761e-01  2.650e+02  -0.001    0.999
## psi21(SETIA BUDI)        -1.705e-01  1.892e+02  -0.001    0.999
## psi21(MAMPANG PRAPATAN)  -2.139e-01  2.078e+02  -0.001    0.999
## psi21(PASAR MINGGU)      -6.638e-01  2.462e+02  -0.003    0.998
## psi21(KEBAYORAN LAMA)    -7.360e-01  2.618e+02  -0.003    0.998
## psi21(CILANDAK)          -3.654e-01  2.532e+02  -0.001    0.999
## psi21(KEBAYORAN BARU)    -2.139e-01  2.078e+02  -0.001    0.999
## psi21(PANCORAN)          -2.451e-01  2.184e+02  -0.001    0.999
## psi21(JAGAKARSA)         -6.638e-01  2.462e+02  -0.003    0.998
## psi21(PESANGGRAHAN)      -4.405e-01  2.395e+02  -0.002    0.999
## psi21(MATRAMAN)           1.628e-01  2.370e+02   0.001    0.999
## psi21(PULO GADUNG)        3.291e-01  1.942e+02   0.002    0.999
## psi21(JATINEGARA)         4.509e-01  2.109e+02   0.002    0.998
## psi21(KRAMAT JATI)        3.030e-01  2.439e+02   0.001    0.999
## psi21(PASAR REBO)         2.649e-01  2.277e+02   0.001    0.999
## psi21(CAKUNG)             3.891e-01  2.259e+02   0.002    0.999
## psi21(DUREN SAWIT)        4.003e-01  2.313e+02   0.002    0.999
## psi21(MAKASAR)            2.560e-01  2.274e+02   0.001    0.999
## psi21(CIRACAS)            2.381e-01  2.201e+02   0.001    0.999
## psi21(CIPAYUNG)           1.245e-01  2.121e+02   0.001    1.000
## 
## 
## AIC: 9396

Terdapat empat paramater dalman model GSTAR(2;1,1) yaitu psi10. psi20, psi11, dan psi21 untuk setiap setiap kecamatan di Provinsi DKI Jakarta. Diperoleh pula nilai AIC untuk model GSTAR(2;1,1) adalah sebesar 9396.

phi2 = fitmodel2$B
phi10_2 = phi2[1:41,]
phi20_2 = phi2[42:82,]
phi11_2 = phi2[83:123,]
phi21_2 = phi2[124:164,]

phi_10_2 = diag(phi10_2,41)
phi_20_2 = diag(phi20_2,41)
phi_11_2 = diag(phi11_2,41)
phi_21_2 = diag(phi21_2,41)
T = 52
##Generate data_train GSTAR(2;1,1)
model_Y2=t(Y)
D1=phi_10_2+(phi_11_2%*%w1)
D2=phi_20_2+(phi_21_2%*%w1)
model1_2=matrix(0,nrow=N,ncol=T)
for(i in 3:T){
  model1_2[,i]=D1%*%(model_Y2[,(i-2)])+D2%*%(model_Y2[,(i-1)])
}

#Returns data_train to initial data_train (diff)
modeldata_train2 = matrix(0,nrow=N,ncol=T)
data_train1_2 = t(data_train)
I = diag(41)
for (i in (3:N)) {
  for (j in (3:T)){
    modeldata_train2[,j] = (D1+I)%*%data_train1_2[,j-1] -(D1)%*%data_train1_2[,j-2]+(D2+I)%*%data_train1_2[,j] -(D2)%*%data_train1_2[,j-1]
  }
}

modeldata_train2 = t(modeldata_train2)


# Menghilangkan baris 0 di t=1
modeldata2 = matrix(0,(T-2),N)
for (i in 1:(T-2)){
  modeldata2[i,] = modeldata_train2[i+2,]
}

data_train2 = data_train[1:50,]

Uji Diagnostik

Model dikatakan cocok jika rataan nol dan variansi residual konstan, residual berdistribusi normal, dan residual saling bebas.

#Residuals
Residual2 = matrix(0,nrow = T-2,ncol = N)
par(mfrow = c(2,2))
for (i in 1:N){
  Residual2[,i] = modeldata2[,i]-data_train2[,i]
  plot(Residual2[,i], type = 'l', main = paste("Residual Kecamatan", i))
  abline(h = 0)
  acf(Residual2[,i],main = paste("ACF Residual Kecamatan", i))
  qqnorm(Residual2[,i],main = paste("Normalitas Residual Kecamatan", i))
  qqline(Residual2[,i])
  hist(Residual2[,i],main = paste("Histogram Residual Kecamatan", i)) 
}

# Uji Kenormalan Residual
for (i in 1:N) {
  print(shapiro.test(Residual2[,i]))
  
}
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.97925, p-value = 0.5208
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.97997, p-value = 0.5507
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.9767, p-value = 0.4225
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.98464, p-value = 0.7561
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.98206, p-value = 0.6413
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.9661, p-value = 0.1599
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.96726, p-value = 0.1786
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.97631, p-value = 0.409
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.96653, p-value = 0.1667
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.9692, p-value = 0.2147
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.96501, p-value = 0.1441
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.96996, p-value = 0.2306
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.9666, p-value = 0.1677
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.93578, p-value = 0.009202
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.95606, p-value = 0.06084
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.934, p-value = 0.007852
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.94167, p-value = 0.0157
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.95888, p-value = 0.07979
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.94945, p-value = 0.03239
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.95519, p-value = 0.05596
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.94137, p-value = 0.01527
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.94544, p-value = 0.02224
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.96461, p-value = 0.1386
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.95823, p-value = 0.07493
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.95695, p-value = 0.06626
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.95536, p-value = 0.05684
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.94577, p-value = 0.02293
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.95823, p-value = 0.07493
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.95262, p-value = 0.04376
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.95695, p-value = 0.06626
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.96075, p-value = 0.09557
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.95239, p-value = 0.04281
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.95298, p-value = 0.04528
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.9575, p-value = 0.06983
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.95978, p-value = 0.08703
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.95852, p-value = 0.0771
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.95707, p-value = 0.06701
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.95761, p-value = 0.07061
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.95542, p-value = 0.05718
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.95635, p-value = 0.06256
## 
## 
##  Shapiro-Wilk normality test
## 
## data:  Residual2[, i]
## W = 0.95867, p-value = 0.07822
#Uji Independensi Residual 
for (i in 1:N) {
  print(Box.test(Residual2[,i],lag = 20, type = "Ljung-Box"))
}
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 108.22, df = 20, p-value = 4.13e-14
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 116.84, df = 20, p-value = 1.11e-15
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 103.68, df = 20, p-value = 2.751e-13
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 122.94, df = 20, p-value < 2.2e-16
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 129.67, df = 20, p-value < 2.2e-16
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 121.34, df = 20, p-value < 2.2e-16
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 102.95, df = 20, p-value = 3.724e-13
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 94.917, df = 20, p-value = 1.012e-11
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 104.24, df = 20, p-value = 2.178e-13
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 94.273, df = 20, p-value = 1.315e-11
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 94.647, df = 20, p-value = 1.129e-11
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 95.215, df = 20, p-value = 8.958e-12
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 92.869, df = 20, p-value = 2.325e-11
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 78.304, df = 20, p-value = 7.604e-09
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 90.468, df = 20, p-value = 6.14e-11
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 52.482, df = 20, p-value = 9.681e-05
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 85.773, df = 20, p-value = 4.025e-10
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 87.691, df = 20, p-value = 1.873e-10
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 82.637, df = 20, p-value = 1.394e-09
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 81.472, df = 20, p-value = 2.205e-09
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 84.922, df = 20, p-value = 5.646e-10
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 113.77, df = 20, p-value = 3.997e-15
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 116.9, df = 20, p-value = 1.11e-15
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 109.69, df = 20, p-value = 2.243e-14
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 102.31, df = 20, p-value = 4.847e-13
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 105.87, df = 20, p-value = 1.104e-13
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 107.03, df = 20, p-value = 6.817e-14
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 109.69, df = 20, p-value = 2.243e-14
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 99.191, df = 20, p-value = 1.758e-12
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 102.31, df = 20, p-value = 4.847e-13
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 92.623, df = 20, p-value = 2.57e-11
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 98.422, df = 20, p-value = 2.411e-12
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 101.33, df = 20, p-value = 7.265e-13
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 105.97, df = 20, p-value = 1.062e-13
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 102.73, df = 20, p-value = 4.083e-13
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 97.925, df = 20, p-value = 2.956e-12
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 101.74, df = 20, p-value = 6.147e-13
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 105.73, df = 20, p-value = 1.171e-13
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 108.43, df = 20, p-value = 3.797e-14
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 98.754, df = 20, p-value = 2.103e-12
## 
## 
##  Box-Ljung test
## 
## data:  Residual2[, i]
## X-squared = 95.242, df = 20, p-value = 8.858e-12
#Menghitung MSE
MSE2 = matrix(0,1,N)
for(i in 1:N){
  MSE2[,i] = mean(Residual2[,i]*Residual2[,i])
}
MSE2
##          [,1]     [,2]    [,3]     [,4]     [,5]     [,6]     [,7]     [,8]
## [1,] 11.89304 21.14966 72.2952 18.83012 10.93716 9.147546 37.22817 22.95196
##          [,9]    [,10]    [,11]    [,12]    [,13]    [,14]   [,15]    [,16]
## [1,] 191.8117 346.7117 235.2134 359.3501 172.3838 207.3766 37.2993 11.96141
##         [,17]    [,18]    [,19]    [,20]    [,21]    [,22]    [,23]    [,24]
## [1,] 54.18294 79.52453 125.3098 35.96767 51.06249 102.8162 24.54072 42.02307
##         [,25]    [,26]    [,27]    [,28]    [,29]    [,30]    [,31]    [,32]
## [1,] 165.9274 166.5445 77.69615 42.02307 46.84428 165.9274 96.65721 73.49866
##         [,33]   [,34]    [,35]    [,36]   [,37]    [,38]    [,39]    [,40]
## [1,] 187.4202 208.971 174.6568 88.84463 509.659 333.3952 86.22222 161.1837
##         [,41]
## [1,] 125.1799

Berdasarkan plot residual data setiap kecamatan di Provinsi DKI Jakarta, secara umum terlihat residual tidak tersebar di sekitar nol. Berdasarkan QQ Plot, terlihat pada awal dan akhir data nilainya cukup jauh dari garis. Sedangkan pada histogram sekilas teradapat beberapa data residual yang tidak berdistribusi normal dan berdistribusi normal. Untuk menguji kenormalan digunakan Uji Shapiro-Wilk diperoleh terdapat 10 kecamatan yang memiliki p-value < 0.5. Artinya untuk uji kenormalan Shapiro-Wilk 𝐻0 ditolak, sehingga tidak berdistribusi normal. Selanjutnya, pada grafik residual terdapat beberapa ACF yang tidak terdapat lag yang melebihi batas signifikansi sehingga dapat diasumsikan tidak ada korelasi antar residual. Untuk pembuktian lebih lanjut, gunakan Uji Ljung-Box diperoleh seluruh kecamatan yang memiliki p-value < 0.05, sehingga 𝐻0 ditolak. Artinya, terdapat korelasi antar residual. Karena data tidak memenuhi 3 asumsi tersebut mengakibatkan beberapa kecamatan tidak terpenuhinya asumsi residual dalam pemodelan.

Forecasting

Selanjutnya diperiksa prediksi berdasarkan model terpilih.

prediksi <- as.matrix(predict(fitmodel2))
prediksi
##       GAMBIR SAWAH BESAR KEMAYORAN     SENEN CEMPAKA PUTIH   MENTENG
## 4  1.4457355   0.7658878  2.535813 0.8739621     1.2250765 0.7290834
## 5  4.2564039   5.5096282  9.492150 5.6330523     4.3346425 2.8807635
## 6  2.2680487   4.1251168  7.618597 2.8695052     2.2203795 2.8809089
## 7  2.5269071   2.6701593  5.750298 3.4688948     2.4829909 2.3744335
## 8  4.2429646   5.5426544  9.342083 4.2239464     3.3684683 3.0552057
## 9  2.5311082   3.6825668  6.716066 3.9022793     2.8848435 2.9250873
## 10 4.4491015   5.2879873 11.128403 5.2419479     4.1128501 2.9690669
## 11 3.7363423   6.2177034  9.289176 4.5618628     3.7935595 4.3868887
## 12 1.9822446   2.1893807  4.312177 2.9793348     1.7486608 1.8528427
## 13 4.8128125   5.9654761 11.036785 5.8401950     4.8175597 3.2774959
## 14 7.4396698   9.5570573 18.471282 8.2547739     6.2182830 6.5459074
## 15 4.4053877   6.0871388 11.251039 6.3382547     4.8461703 3.6652472
## 16 2.5936124   3.2530979  5.001709 3.3740697     1.3868947 1.9282024
## 17 4.8038109   7.4331072 13.148716 6.1763073     5.3264307 5.2971815
## 18 5.7173796   7.5267491 14.499821 7.8139566     5.5524106 5.2187882
## 19 4.7745567   6.4577480 11.116457 5.2372790     4.3563356 3.2155870
## 20 3.6388726   5.6133180 10.521313 4.9429735     3.5930614 4.1431040
## 21 5.2147079   7.3879958 12.253806 6.5392326     5.4386464 4.3500028
## 22 2.8178902   3.6418246  6.794504 3.6610315     2.6416916 2.8774894
## 23 3.9725025   5.4100774 10.508367 5.1059712     4.0053787 3.6059599
## 24 5.8276096   7.3859370 13.861977 6.7868894     6.0905664 4.6805705
## 25 3.0256604   3.8016981  6.821679 3.8558555     2.7211663 2.3255909
## 26 2.7523077   3.8434613  7.621189 3.9443415     2.8389334 3.1832136
## 27 4.6564494   5.6249986 11.233351 5.6530424     4.7296382 3.2370349
## 28 3.9875045   6.1157867  9.891828 4.9097501     4.0497691 4.2126018
## 29 3.4736300   3.9132112  7.780262 4.5142598     2.3942561 2.2820438
## 30 3.8092071   5.1326985  8.916623 4.8566303     4.4647139 3.2047071
## 31 3.9348939   5.0125463 10.097141 4.8771939     3.5511690 3.1594916
## 32 3.2892949   4.3730420  8.346304 4.2997462     3.0199438 3.2083863
## 33 4.4694683   6.4492657 11.607255 6.5174041     4.5138288 3.9426865
## 34 1.6823365   2.5083157  5.136792 2.2047411     1.9140495 1.6622059
## 35 3.0715869   4.1442266  6.820916 4.4808324     3.1121053 3.2957919
## 36 3.5732294   3.7947416  8.117110 3.5818548     2.4801501 2.3593838
## 37 2.9215555   4.4313259  8.473929 4.4380105     3.4300446 3.3255877
## 38 3.1287303   3.7731360  6.868813 3.8198651     2.7677285 2.7387945
## 39 2.6047166   3.1325144  6.176668 3.3150584     2.0912911 1.7697416
## 40 2.9522857   3.0535426  6.319922 3.0124292     3.0597854 1.8267376
## 41 2.3940416   2.9617209  5.255129 2.8262042     2.4896256 3.0285369
## 42 1.0282069   2.2634846  4.339061 2.2206077     0.9807297 0.7841281
## 43 1.5191535   2.1229300  4.329598 2.1296217     1.6446564 1.2359000
## 44 1.3140987   1.0827228  3.156508 1.0674423     1.3909427 1.4135780
## 45 2.1443189   2.5008185  4.666068 2.5671570     1.0320744 0.9670496
## 46 1.6621376   2.0510177  4.058100 1.8399199     2.2019972 2.1858922
## 47 0.4774177   1.3522249  2.063620 1.5054035     0.1485434 0.2474795
## 48 1.5550817   2.0898163  3.748932 2.1441348     1.3044979 1.1955064
## 49 1.4083750   1.2201568  2.664881 1.1696607     1.5136162 1.4947235
## 50 0.9258007   1.4146223  2.172253 1.3966620     0.9397813 0.9728047
## 51 0.8285104   1.2177630  1.892572 1.0742473     0.9237027 1.0006133
## 52 1.7939540   2.7539697  5.510482 2.7921321     1.7768026 1.8679837
##    TANAH ABANG JOHAR BARU PENJARINGAN TANJUNG PRIOK      KOJA CILINCING
## 4     1.814509   1.863759    7.716940      9.926094  8.559961  9.890082
## 5     7.598677   4.982716    6.459291      9.229485  7.457742  9.335629
## 6     4.548436   4.525511   11.968771     16.555061 13.941452 16.573262
## 7     4.730695   3.860496    9.488334     13.561282 10.979993 13.330980
## 8     6.243163   5.092016   15.528465     20.643317 17.143162 21.412283
## 9     4.791500   3.838111    6.789119      8.935636  7.080200  8.572947
## 10    7.921685   5.459208   17.041022     22.685207 19.214291 23.337186
## 11    6.468714   6.500834    7.667701      9.109460  7.481364  9.174796
## 12    2.833226   2.020682    9.584246     12.310273 10.872464 12.297087
## 13    7.588188   5.823163    6.673616      9.579300  7.556320  9.587013
## 14   13.159256   9.692361   20.606138     27.774208 23.143202 28.564360
## 15    8.320145   6.613359   15.343706     21.784952 17.126935 21.468508
## 16    2.930327   2.981526   16.396525     21.371016 18.199335 21.808578
## 17    9.671067   7.088746   17.976989     24.028205 19.696967 23.735045
## 18    9.723222   7.601148   17.408093     24.401535 19.574090 24.363060
## 19    8.537582   6.611268   23.149496     31.375180 25.406750 31.269726
## 20    7.560217   5.604793   22.196549     30.202597 24.220350 30.052385
## 21    9.087430   7.300454   23.255730     31.690893 26.387359 32.509882
## 22    4.660167   3.663230   18.334278     24.153953 19.989471 23.708880
## 23    8.166089   5.159426   21.306611     29.571764 24.269025 30.226810
## 24   10.265107   8.508470   17.964164     23.634164 19.778100 24.494488
## 25    5.169843   3.532488   15.839240     21.975640 17.591782 22.685103
## 26    5.893022   4.883499   17.285619     21.481744 18.014134 23.070889
## 27    7.783714   5.356123   15.381821     21.490996 17.631471 22.477132
## 28    7.176181   6.406050   15.497095     19.376246 16.033868 20.390069
## 29    5.189185   4.220230   15.985201     21.094128 17.232494 21.313049
## 30    6.064304   5.072480   10.214489     12.686872 10.548392 13.317682
## 31    6.966140   4.904308   16.005037     21.230863 16.838906 20.837335
## 32    6.258226   5.463587    9.975773     12.983993 11.224906 13.994969
## 33    8.289637   5.936752   20.239569     27.358307 22.340295 26.920370
## 34    3.260801   2.901626   12.008677     15.303348 13.575728 17.209172
## 35    5.052921   3.980122   15.664161     21.042950 17.742562 21.080358
## 36    5.389910   4.928271   12.412856     17.920072 14.769182 18.214884
## 37    6.556886   5.021756   14.998842     19.359535 16.103028 20.771143
## 38    4.623361   3.524089    7.437388      9.736428  7.748293 10.037524
## 39    5.096166   3.569333    9.129101     12.579273 10.670871 12.755725
## 40    4.783741   3.360290   11.835642     15.097763 12.469598 16.564075
## 41    3.925728   3.916383    5.272707      8.379148  6.811227  7.620987
## 42    3.244652   1.847551   10.240766     12.758800 11.377721 14.282005
## 43    3.281347   2.250210    9.096438     13.597190 10.125788 12.969556
## 44    2.144507   2.386343    7.872057      9.212438  8.089764  9.752983
## 45    3.613757   1.997936   13.361508     20.032595 15.875577 19.516640
## 46    3.024467   3.331714    6.855877      8.529969  6.952616  8.567815
## 47    1.173107   1.162742    7.447605     10.514258  9.255605 10.472074
## 48    2.701035   2.194834    6.729926      8.247326  6.239057  8.491360
## 49    2.578888   1.559976    6.801939      8.806421  8.261289  8.869819
## 50    1.852642   1.317831   10.100158     13.991929 10.367278 13.984684
## 51    1.701086   1.220645    6.708290      8.903475  8.015602  8.867035
## 52    3.553712   2.697774    8.808010     11.429563  9.649222 12.372259
##    KELAPA GADING CENGKARENG GROGOL PETAMBURAN TAMAN SARI   TAMBORA KEBON JERUK
## 4       7.797633  10.881092          4.966204  3.0157159  5.925516    7.256608
## 5       6.187483  18.106610          7.765215  4.0415853  8.862211   10.755437
## 6      12.050722   9.337106          3.275362  2.1686517  4.693458    6.211646
## 7       9.514959  14.821671          7.711128  4.0612753  8.433560    9.989465
## 8      15.096036  13.531057          4.934035  3.0427353  6.057608    8.673361
## 9       6.090028   9.778075          4.407662  1.9653101  5.227065    5.814265
## 10     16.969047  21.860011         10.017793  5.8152518 10.834206   13.439039
## 11      5.653543  17.124026          5.808105  4.1360471  8.368626   10.601274
## 12      8.873172  15.268535          7.321575  3.0236227  9.056345    9.437113
## 13      6.266646  14.307142          6.155913  3.3169197  6.891648    9.059390
## 14     19.934695  24.502889         10.766331  6.7038153 12.893322   14.623304
## 15     15.033079  21.405743          8.645180  5.1718247 10.930093   13.001580
## 16     15.091774  20.538811          9.202177  3.9710390 11.070379   12.799093
## 17     16.713533  18.420195          8.101483  4.4490140  9.101459   11.311023
## 18     16.499796  16.315690          6.904687  4.7743597  9.007093    9.749304
## 19     22.511000  19.614356          8.516971  4.3583762 10.057066   11.640266
## 20     20.278668  20.791741          8.170248  5.0194632  9.943230   12.683931
## 21     23.028173  15.371093          6.255367  3.6486819  8.420425   10.054363
## 22     16.719797  15.883801          7.226567  3.9938854  8.148379    9.604364
## 23     20.990815  15.365362          6.156338  3.4151194  7.515549    9.558112
## 24     16.775330  14.231856          6.315366  3.1879402  7.435512    9.165562
## 25     15.607576  15.140927          6.403027  3.4937481  7.345499    9.672844
## 26     15.523593  14.013925          6.038301  2.9959408  7.021177    9.021391
## 27     14.970505  15.298189          6.022578  4.0760388  8.046790    9.205032
## 28     14.345544  13.215336          5.913925  2.5259337  6.544538    8.640125
## 29     14.402849  14.276553          6.122915  3.0115004  7.202554    9.311772
## 30      8.626241  14.388735          6.051703  3.4121875  7.283933    8.996978
## 31     14.960302  11.486311          5.069725  3.1172880  6.093087    7.344821
## 32      8.996391  13.341603          6.352867  2.8902497  7.222500    8.179234
## 33     19.562862  20.809759          7.805308  5.0359453  9.916389   12.677862
## 34     10.579740  11.706485          4.717722  3.1589265  6.628444    7.126715
## 35     14.871039  12.546727          6.598067  2.7320551  7.166488    7.853720
## 36     12.634257  16.208113          6.438839  3.7015986  7.730776   10.247153
## 37     13.749303  12.208667          4.915097  3.3550095  6.177058    6.905203
## 38      7.023174   9.314546          4.469738  2.0487869  5.361884    6.223440
## 39      9.443942  12.308784          5.584199  3.2975124  6.459895    7.842632
## 40     10.592900   9.995684          3.581267  1.9361064  4.705838    5.626186
## 41      6.061137   8.181633          4.111514  1.8677648  5.024264    5.641177
## 42      8.907970   8.772825          4.307510  2.4500871  4.269160    5.487546
## 43      9.697208   8.566972          3.945247  1.9748028  4.308445    5.173456
## 44      6.464267   6.306216          1.969433  0.9760087  3.232220    3.356526
## 45     14.506680   8.628306          4.943642  2.3798375  4.341691    5.589779
## 46      6.096039   7.837092          2.580866  1.9693319  3.828719    5.015998
## 47      7.846983   7.654253          3.003213  1.6753467  3.863328    4.485802
## 48      5.287920   6.954859          3.252434  1.9991683  3.966264    3.952379
## 49      7.112277   5.975396          2.921768  0.9326546  2.923660    4.050833
## 50      9.369071   8.771565          4.028655  2.3691955  4.375180    5.495995
## 51      7.101912   7.866881          2.561577  2.0684573  3.936580    4.746568
## 52      7.823020   7.488640          3.274420  1.6380951  3.824911    4.804600
##    KALI DERES  PALMERAH KEMBANGAN     TEBET SETIA BUDI MAMPANG PRAPATAN
## 4    9.689800  4.788788  5.634666  7.794808   4.165918         4.712867
## 5   13.866841  6.978564  8.953155  9.074499   4.928396         6.255586
## 6    7.515603  4.044252  4.418142  8.204857   4.770354         5.756670
## 7   11.985705  6.097065  8.138614  8.414678   3.786579         5.577799
## 8   10.901227  5.238673  6.585915  8.950338   4.279464         6.056132
## 9    7.897391  4.035030  4.963560  5.805414   2.702877         3.864353
## 10  17.504700  8.663027 11.151584 10.770779   5.298327         6.377237
## 11  12.686254  6.852489  8.384732  5.959680   3.741256         4.981175
## 12  12.241228  7.055546  7.328509  3.997571   2.687515         3.140879
## 13  11.592811  6.037980  7.083355  4.461611   2.286934         3.403746
## 14  18.984975 10.603278 11.856933  9.984359   4.423335         6.574843
## 15  16.477492  9.158037 10.350135  8.204526   3.642117         5.820936
## 16  16.098949  8.952835  9.971732  7.522137   4.455017         5.019908
## 17  14.332953  7.059809  9.189510  6.580073   2.522483         3.692468
## 18  13.076434  6.906464  8.665942  9.497635   5.741814         6.387812
## 19  14.852667  8.094573  9.222116 10.004170   4.383224         5.882524
## 20  15.570681  7.989437 10.566494 11.138213   5.288134         7.025128
## 21  12.052787  6.399562  8.289006  8.801171   3.924910         5.773711
## 22  12.019633  7.071390  7.535087  7.061549   3.071901         4.013400
## 23  12.086475  6.350690  7.549119  9.757059   5.254980         6.488638
## 24  11.054633  6.179343  7.570522 10.364806   4.820841         7.181340
## 25  11.602244  6.308421  7.664535 11.908007   6.163025         7.763408
## 26  10.958191  5.972705  7.090096  9.914302   4.733603         5.881629
## 27  12.311052  6.083871  7.015883 12.477242   6.276690         8.163543
## 28  10.279401  5.899363  6.857849 13.860707   6.861688         8.944690
## 29  11.167769  6.038706  7.242096 15.812282   7.688878         9.681128
## 30  11.280716  5.946584  7.127792 13.924360   6.920520         8.867164
## 31   8.457526  5.109212  5.104836 14.273253   7.160501         8.913605
## 32  10.429073  6.232122  7.568268 10.256347   5.138276         7.330317
## 33  15.799688  8.043260 10.073590 16.150020   8.413668        10.211469
## 34   9.306974  4.963939  4.874051 15.801860   7.129243        10.653233
## 35   9.713058  5.187007  6.247311 16.293324   7.933460         9.360735
## 36  12.468236  6.852789  8.475191 16.249479   7.344111         9.639175
## 37   9.245350  4.942264  5.901324 13.139108   6.433000         8.295886
## 38   7.369682  4.083835  4.870910  9.136242   3.997391         5.034616
## 39  10.212073  5.624525  6.428071  8.007799   3.614107         4.770858
## 40   6.803320  3.950375  4.579773  8.527128   4.344756         5.546428
## 41   6.553221  3.977102  4.806100  6.970574   2.760208         5.027900
## 42   7.869108  4.307944  4.465376  6.252120   3.382122         4.050596
## 43   5.927083  2.999510  4.301063  5.120404   1.919561         3.250441
## 44   4.187404  2.280266  3.417025  3.923170   2.293608         3.129348
## 45   8.057917  4.626498  4.323315  6.181788   2.828807         3.983096
## 46   5.559597  2.595110  3.980196  4.863127   2.991781         4.115201
## 47   5.462918  2.787458  3.773255  4.746786   1.874907         2.686813
## 48   6.424769  3.313945  3.872201  5.273793   2.295529         3.228568
## 49   4.761663  2.959353  2.851875  7.343595   3.006137         4.164566
## 50   6.308370  3.000143  4.474891  7.885438   3.723357         4.817090
## 51   6.063575  2.962812  4.180922  9.956029   4.905136         5.856772
## 52   5.842042  3.033796  3.705958  6.791611   2.750530         3.693118
##    PASAR MINGGU KEBAYORAN LAMA  CILANDAK KEBAYORAN BARU  PANCORAN JAGAKARSA
## 4     10.008908      10.019858  6.976372       4.712867  4.949326 10.008908
## 5     12.149986      12.124634  7.953909       6.255586  6.129468 12.149986
## 6     11.402303      11.326314  7.535092       5.756670  5.673111 11.402303
## 7      9.937811       9.856198  7.376506       5.577799  5.593743  9.937811
## 8     12.509416      12.545393  8.004127       6.056132  6.075007 12.509416
## 9      6.053286       5.950237  4.795423       3.864353  3.841365  6.053286
## 10    14.557792      14.701613  9.723224       6.377237  7.393214 14.557792
## 11     9.101214       8.956192  5.238942       4.981175  4.766675  9.101214
## 12     5.655058       5.571818  4.013975       3.140879  3.453371  5.655058
## 13     5.765037       5.782961  4.450981       3.403746  3.185270  5.765037
## 14    13.058145      13.121071  9.063767       6.574843  6.543647 13.058145
## 15    10.240050      10.170375  7.382217       5.820936  5.788697 10.240050
## 16    10.595809      10.521109  6.405357       5.019908  5.153089 10.595809
## 17     7.469367       7.306081  5.549327       3.692468  4.638825  7.469367
## 18    13.327262      13.458505  8.511657       6.387812  6.302221 13.327262
## 19    12.309901      12.224778  8.965223       5.882524  6.990091 12.309901
## 20    14.243260      14.324831 10.053275       7.025128  6.913584 14.243260
## 21    10.797273      10.794341  7.798074       5.773711  6.043189 10.797273
## 22     9.316500       9.336188  6.077776       4.013400  4.922422  9.316500
## 23    12.355192      12.347968  8.690964       6.488638  6.309305 12.355192
## 24    13.604361      13.668100  9.373809       7.181340  7.344439 13.604361
## 25    14.743861      14.772754  9.816031       7.763408  7.735710 14.743861
## 26    12.675060      12.672430  8.872545       5.881629  6.961364 12.675060
## 27    15.364517      15.424169 10.214277       8.163543  8.120849 15.364517
## 28    18.165425      18.164572 12.104369       8.944690  9.079523 18.165425
## 29    18.742859      18.674759 13.496345       9.681128 10.640219 18.742859
## 30    17.248904      17.332320 11.883795       8.867164  8.829420 17.248904
## 31    18.136026      18.159568 12.189862       8.913605  9.244788 18.136026
## 32    13.265714      13.259684  9.319873       7.330317  7.137090 13.265714
## 33    21.237799      22.334226 14.256423      10.211469 11.224558 21.237799
## 34    19.953020      19.460495 14.053236      10.653233 11.363944 19.953020
## 35    18.780886      19.350752 12.774103       9.360735 10.649901 18.780886
## 36    21.243743      21.201379 14.180989       9.639175 10.797981 21.243743
## 37    17.569939      17.584893 11.061301       8.295886  9.263043 17.569939
## 38    10.935310      10.903963  7.296023       5.034616  5.928413 10.935310
## 39    10.096490      10.241681  7.051978       4.770858  4.759977 10.096490
## 40    11.010004      10.999285  7.621817       5.546428  5.486551 11.010004
## 41     8.412872       8.328153  6.134043       5.027900  4.787328  8.412872
## 42     7.617986       7.707600  5.237212       4.050596  4.132877  7.617986
## 43     6.594874       6.622195  4.168408       3.250441  3.281890  6.594874
## 44     5.002615       4.959137  4.013637       3.129348  3.066631  5.002615
## 45     7.933234       7.911056  5.121376       3.983096  3.874122  7.933234
## 46     6.989492       6.995385  5.102354       4.115201  4.159721  6.989492
## 47     5.783851       5.795505  3.552573       2.686813  2.719876  5.783851
## 48     6.184588       6.187180  4.389839       3.228568  3.245360  6.184588
## 49     9.507084       9.544346  6.196889       4.164566  5.109386  9.507084
## 50     9.089029       9.027239  6.784874       4.817090  4.665919  9.089029
## 51    13.400557      13.490838  8.946105       5.856772  7.226714 13.400557
## 52     6.715147       6.630115  5.650549       3.693118  3.441580  6.715147
##    PESANGGRAHAN  MATRAMAN PULO GADUNG JATINEGARA KRAMAT JATI PASAR REBO
## 4      6.988603  5.467202    9.500522   9.817194    9.907767   7.070196
## 5      9.070718  8.118637   11.972754  13.206123   11.657862   7.741519
## 6      8.402049  7.020569   11.654400  11.214884   11.526922   7.540210
## 7      7.346672  8.282927   13.566691  15.019573   12.577045   9.680921
## 8      9.202056  7.894013   11.456763  12.113566   11.996593   7.393263
## 9      5.447082  5.790901   10.139342   9.773532    8.785670   6.993649
## 10    10.907073 12.053784   17.529886  19.053725   17.805682  12.548083
## 11     6.574298  9.841956   16.768272  17.338599   15.192635  10.794549
## 12     3.776352  7.475970   11.918919  12.412486   12.004669   8.379543
## 13     4.511532  5.878895    9.985683   9.977588    8.925717   6.728394
## 14     9.928522  8.239763   12.432000  14.300806   13.137295   9.187609
## 15     8.571019 12.248796   20.671676  21.946207   20.885085  14.864405
## 16     7.371712 10.791569   18.350727  19.106667   16.244502  12.554298
## 17     6.383844  9.533919   15.264974  15.635340   14.547580   9.876937
## 18     9.602809 10.758568   17.630571  18.408511   16.975123  12.096192
## 19     9.914483 10.215424   15.408445  16.486330   15.515591  11.575161
## 20    10.996187 11.736028   19.045495  20.388472   18.816904  12.876400
## 21     8.792345 10.126260   15.407888  16.661187   15.030591  11.324476
## 22     7.082064  8.071085   12.248169  13.233705   12.329445   8.001859
## 23     9.655356  9.137493   15.017127  15.959561   13.999401  10.461760
## 24    10.506418  7.949760   11.980917  12.803566   12.530816   8.700774
## 25    11.687011 11.548318   18.862345  19.941889   17.697971  12.317643
## 26     9.767881  7.010890   11.398189  12.295803   10.292916   8.084260
## 27    12.361063 10.383344   16.676131  17.560800   17.312986  11.141496
## 28    13.006470 10.974785   17.088648  18.253798   15.288967  12.169546
## 29    14.519896 12.271824   20.278373  22.152891   20.555933  14.217415
## 30    12.716144 10.298856   16.632518  16.802019   14.902798  10.738444
## 31    13.076939 11.135158   17.916633  19.082371   17.411131  12.228301
## 32    10.467217 11.287875   18.323677  19.715070   17.677398  12.644708
## 33    15.351133 12.562339   19.223009  20.093461   17.991770  13.426081
## 34    16.065796 11.120198   17.981243  19.136465   18.381270  12.366004
## 35    14.191007  9.502487   15.163252  15.467531   13.467230   9.574373
## 36    15.550959 11.782174   18.956998  20.698361   18.652922  13.292898
## 37    13.276391  6.361886   10.382299   9.902802    9.176916   7.112400
## 38     7.980225  6.040973   10.245589  10.519047    9.766043   6.537713
## 39     7.508822  5.725555    8.732754   9.243465    8.727368   5.647285
## 40     8.708694  3.668108    5.731825   6.598409    5.080881   4.020894
## 41     6.856660  4.444900    7.166749   7.679949    7.253081   4.753894
## 42     6.433544  4.066989    6.191785   6.974858    6.089554   4.105001
## 43     5.240158  3.750346    5.529850   6.406579    5.473205   3.638105
## 44     4.116559  2.949170    3.893163   3.847688    3.912690   2.912074
## 45     6.085956  3.019184    5.185337   5.812494    5.223261   2.895145
## 46     5.016246  4.692833    7.704338   8.185647    6.913663   5.870365
## 47     4.676453  2.647580    4.030402   3.968224    3.342935   2.160595
## 48     5.110231  3.813555    5.737674   5.549273    5.084782   3.844883
## 49     7.470236  2.634228    4.770410   5.754141    4.711211   3.929836
## 50     7.625393  4.420161    7.549807   6.975390    7.024588   4.854855
## 51     9.986303  4.206882    6.042509   6.447489    5.714902   4.091406
## 52     5.409401  4.948763    8.444260   9.843956    8.547215   6.567830
##       CAKUNG DUREN SAWIT   MAKASAR   CIRACAS  CIPAYUNG
## 4  15.121886   12.686388  6.999941  8.736450  7.421343
## 5  20.405761   16.189111  7.731970 11.266278 10.122240
## 6  18.713829   15.683414  7.626129 10.463816  9.359663
## 7  21.633238   17.409039  9.795704 12.329965 10.223196
## 8  19.403359   15.521066  7.160816 10.504215  9.983356
## 9  15.878441   13.183609  7.188200  9.031826  7.820271
## 10 29.545550   23.378058 11.392179 16.823598 14.621119
## 11 27.986184   22.245773 11.211621 15.676665 14.383704
## 12 19.446389   16.089331  8.205074 10.465723  9.888099
## 13 15.668228   13.162632  6.594491  9.162039  7.681009
## 14 22.267068   17.375104  9.255419 12.798732 10.258352
## 15 33.822233   28.043749 13.952360 18.820980 16.977698
## 16 28.512344   23.256564 11.825684 16.179395 14.313931
## 17 26.327658   20.524859 10.214233 14.951854 13.462559
## 18 28.143311   22.319433 11.582309 15.475511 13.650299
## 19 27.016545   22.103457 11.242828 14.736726 13.687600
## 20 30.394985   25.032530 13.027238 17.590554 14.845714
## 21 26.784381   21.376023 11.235795 14.110952 13.218479
## 22 19.918106   16.104421  8.074299 11.177853  9.922812
## 23 24.464416   20.476225 10.554929 14.369798 12.107294
## 24 21.448862   16.878316  8.441428 11.246822 10.822344
## 25 29.772137   24.880885 12.540417 16.602683 14.348676
## 26 18.728543   14.760572  7.744477 11.014048  9.262921
## 27 28.215729   23.483603 11.495217 15.284888 13.612549
## 28 27.661031   21.574683 10.936146 15.972326 13.853108
## 29 33.754207   27.462949 14.890490 19.115053 16.283643
## 30 26.708740   21.918087 10.134613 14.564394 13.245928
## 31 30.201904   23.692589 12.269640 17.344951 15.150088
## 32 30.455148   24.550624 12.547252 17.260454 14.954787
## 33 31.504367   25.798058 13.307081 17.096960 15.241951
## 34 29.831448   24.414416 12.465361 17.208825 15.187601
## 35 23.499469   19.364420  9.715650 13.658323 11.319116
## 36 31.369349   26.108576 13.476375 17.947597 14.864660
## 37 16.575153   13.422727  6.645493  9.657322  9.172800
## 38 15.986643   12.797577  7.011490  9.135194  7.499947
## 39 14.471993   11.638809  5.478071  8.225849  6.491780
## 40 10.607099    8.782657  3.988285  6.119590  5.141679
## 41 11.135860    8.678624  4.857532  6.651101  5.594350
## 42 10.498689    8.385670  4.005732  6.009453  4.922393
## 43  9.574445    7.601258  3.605939  5.636597  4.727587
## 44  6.886467    4.879781  2.920265  3.925465  2.970730
## 45  8.160478    7.469861  2.893741  5.281028  4.242953
## 46 12.540253    9.794054  5.998512  6.669001  5.580280
## 47  6.525860    4.657545  1.867240  3.484645  3.452375
## 48  8.583357    8.083257  4.089121  5.070022  4.701933
## 49  9.040405    6.357613  3.748313  4.908383  3.712790
## 50 11.111217    9.457558  4.918927  5.923049  5.429514
## 51 10.304536    8.344927  4.074987  5.205472  5.332878
## 52 14.522357   11.588359  6.725597  8.530279  6.974541
plot(fitmodel2, n_predict = 30)

(n_predict = predict(fitmodel2, n = 10))
##                GAMBIR SAWAH BESAR KEMAYORAN    SENEN CEMPAKA PUTIH  MENTENG
## 521          1.457987    2.101526  4.354345 2.071998      1.352186 1.399514
## 5211         1.346502    1.936180  3.736105 2.038683      1.280791 1.311450
## 52111        1.548457    2.273479  4.452235 2.275609      1.517146 1.562666
## 521111       1.517212    2.196850  4.422250 2.194631      1.446774 1.481152
## 5211111      1.451625    2.104361  4.167055 2.155525      1.380763 1.417218
## 52111111     1.488173    2.170467  4.272307 2.193212      1.438013 1.480698
## 521111111    1.494961    2.174576  4.318399 2.189312      1.436376 1.475133
## 5211111111   1.479808    2.146680  4.264238 2.178961      1.413219 1.450463
## 52111111111  1.486098    2.163380  4.275606 2.187388      1.429962 1.469099
## 521111111111 1.485875    2.160223  4.282866 2.183633      1.425578 1.465756
##              TANAH ABANG JOHAR BARU PENJARINGAN TANJUNG PRIOK     KOJA
## 521             2.896999   2.182339    7.067132      8.807994 8.345615
## 5211            2.732383   1.919029    8.238754     10.445602 9.246876
## 52111           3.090928   2.248835    7.489221      9.334685 8.783865
## 521111          3.035471   2.242791    8.276869     10.526158 9.439934
## 5211111         2.920799   2.113265    7.638068      9.534197 8.905132
## 52111111        2.982636   2.164243    8.118188     10.309132 9.326454
## 521111111       2.995137   2.192739    7.773285      9.731092 9.027551
## 5211111111      2.967949   2.158307    8.026644     10.175050 9.253297
## 52111111111     2.981561   2.169642    7.841444      9.836913 9.087424
## 521111111111    2.978008   2.170721    7.977446     10.097016 9.211946
##              CILINCING KELAPA GADING CENGKARENG GROGOL PETAMBURAN TAMAN SARI
## 521           9.552868      6.669658   7.927196          3.371469   1.909460
## 5211         11.546676      7.226060   8.023790          3.110484   2.013904
## 52111        10.270606      6.867048   7.735643          3.178233   1.845037
## 521111       11.606382      7.399105   7.718475          3.214390   1.846643
## 5211111      10.528476      6.919631   7.884450          3.187899   1.927327
## 52111111     11.357391      7.313590   7.848246          3.188952   1.899054
## 521111111    10.751013      7.011746   7.775054          3.193890   1.871120
## 5211111111   11.207158      7.255437   7.821387          3.193253   1.895640
## 52111111111  10.866794      7.061921   7.831756          3.190652   1.897305
## 521111111111 11.122762      7.219002   7.814538          3.193118   1.887325
##               TAMBORA KEBON JERUK KALI DERES PALMERAH KEMBANGAN    TEBET
## 521          3.970046    5.085359   5.953275 3.012579  4.034247 7.079845
## 5211         3.958631    5.024792   6.073612 3.015225  4.130723 6.511433
## 52111        3.900281    4.857185   5.953158 3.018937  3.872251 6.730883
## 521111       3.911235    4.888477   5.887586 3.006250  3.914494 6.660656
## 5211111      3.933576    4.984340   5.981450 3.012817  4.043741 6.638238
## 52111111     3.922889    4.945901   5.987220 3.016389  3.967663 6.635989
## 521111111    3.917775    4.904249   5.936591 3.010902  3.933032 6.639294
## 5211111111   3.924675    4.940446   5.956941 3.013340  3.987327 6.632454
## 52111111111  3.922031    4.943504   5.965216 3.012899  3.978843 6.636947
## 521111111111 3.922272    4.930399   5.959367 3.013257  3.958260 6.632875
##              SETIA BUDI MAMPANG PRAPATAN PASAR MINGGU KEBAYORAN LAMA CILANDAK
## 521            3.470777         4.024218     9.526687       9.812737 6.107108
## 5211           2.882996         3.811822     6.991113       6.794508 5.561383
## 52111          3.205629         3.936201     8.536929       8.752607 5.812615
## 521111         3.057631         3.945108     7.650051       7.500642 5.759555
## 5211111        3.123172         3.918514     8.156553       8.289941 5.742006
## 52111111       3.080689         3.922532     7.800849       7.708068 5.741618
## 521111111      3.110106         3.929245     8.049812       8.128887 5.749100
## 5211111111     3.089786         3.921952     7.873644       7.820269 5.740543
## 52111111111    3.103726         3.927774     7.996797       8.043226 5.747356
## 521111111111   3.094013         3.923365     7.909846       7.880855 5.741946
##              KEBAYORAN BARU PANCORAN JAGAKARSA PESANGGRAHAN MATRAMAN
## 521                4.024218 4.366760  9.526687     6.352363 4.652950
## 5211               3.811822 3.597726  6.991113     5.414220 4.541703
## 52111              3.936201 3.931958  8.536929     5.845906 4.545450
## 521111             3.945108 3.809774  7.650051     5.709089 4.595390
## 5211111            3.918514 3.840472  8.156553     5.727632 4.596328
## 52111111           3.922532 3.816569  7.800849     5.704683 4.566647
## 521111111          3.929245 3.835437  8.049812     5.727653 4.587827
## 5211111111         3.921952 3.820942  7.873644     5.707934 4.580646
## 52111111111        3.927774 3.831357  7.996797     5.722860 4.581800
## 521111111111       3.923365 3.823728  7.909846     5.711515 4.581125
##              PULO GADUNG JATINEGARA KRAMAT JATI PASAR REBO   CAKUNG DUREN SAWIT
## 521             7.572918   7.946246    7.028632   5.433845 12.58667    9.986486
## 5211            7.299579   7.844690    7.157959   5.158005 12.36371    9.912194
## 52111           7.429069   8.240358    7.183396   5.512371 12.60682   10.032749
## 521111          7.463235   8.054365    7.201913   5.421358 12.61290   10.052067
## 5211111         7.468575   8.116819    7.236853   5.401288 12.62101   10.080117
## 52111111        7.426792   8.104249    7.169165   5.421198 12.56688   10.011389
## 521111111       7.456855   8.098051    7.223127   5.421462 12.61331   10.064276
## 5211111111      7.446391   8.103267    7.193214   5.412105 12.58967   10.038705
## 52111111111     7.448225   8.104866    7.207665   5.419711 12.60021   10.049045
## 521111111111    7.447224   8.100027    7.199910   5.416789 12.59376   10.043421
##               MAKASAR  CIRACAS CIPAYUNG
## 521          5.167000 7.082515 6.318972
## 5211         5.368618 6.808981 6.210368
## 52111        5.472975 7.151232 6.233284
## 521111       5.380122 7.083980 6.290369
## 5211111      5.460715 7.068450 6.283807
## 52111111     5.403613 7.069939 6.254706
## 521111111    5.429692 7.081312 6.280416
## 5211111111   5.422637 7.070551 6.266429
## 52111111111  5.424136 7.076645 6.273812
## 521111111111 5.422199 7.073786 6.268948

Kesimpulan

Dipilih model GSTAR (1; 1) sebagai model GSTAR untuk data penderita DBD di Provinsi DKI Jakarta tahun 2013 untuk setiap kecamatan di Provinsi DKI Jakarta, karena memiliki nilai MSE terkecil. Hasil prediksi yang diperoleh untuk penderita Demam Berdarah di setiap kecamatan di Provinsi DKI Jakarta dalam beberapa minggu ke depan menggunakan model GSTAR (1;1) yang kemudian akan dianalisis lebih lanjut menggunakan Analisis Spasial.