

Email : naftali.gunawan@student.matanauniversity.ac.id
RPubs : https://rpubs.com/naftalibrigitta/
Jurusan : Statistika Bisnis
Address : Perumahan Ciater Permai
Jl. Anggrek III, Blok A5 No. 10, RT 001, RW 004, Serpong, Tangerang Selatan, Banten 15310.
Intergral
Tentu
## Loading required package: mosaicCore
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## Attaching package: 'mosaicCalc'
## The following object is masked from 'package:stats':
##
## D
{
F = antiD(x^3+5*x ~ x)
}
F(x = 5) - F(x = 3)
## [1] 176
Tak Tentu
library(mosaicCalc)
{
F = antiD(x^4 ~ x)
}
F
## function (x, C = 0)
## 1/5 * x^5 + C
Lingkaran dan Bola
Luas, Keliling, dan Volume
lkellvol <- function(π,r) # nama fungsi dan argumen
{ # pembukaan fungsi
luas_lingkaran = π*r^2 # menghitung luas lingkaran
keliling_lingkaran = 2*π*r # menghitung keliling lingkaran
volume_bola = 4/3*π*r^3 # menghitung volume bola
return (cat(c("Luas Lingkaran:", luas_lingkaran, sep = "\n",
"Keliling Lingkaran:", keliling_lingkaran,sep="\n",
"Volume Bola:", volume_bola)))
} # penutupan fungsi
lkellvol(22/7,7) # menggunakan fungsi
## Luas Lingkaran: 154
## Keliling Lingkaran: 44
## Volume Bola: 1437.33333333333
Nilai pada Data Berfrekuensi
| Lompatan (dalam cm) |
Frekuensi |
| 150 |
20 |
| 160 |
10 |
| 170 |
15 |
| 180 |
14 |
| 190 |
5 |
| 200 |
1 |
Maksimum
Lompatan <- seq (150, 200, 30) # masukan/argumen 1
Frek <-c(20, 10, 15, 14, 5, 1) # masukan/argumen 2
max_frek <- function(x,frek) # nama fungsi dan argumen
{ # pembukaan fungsi
keluaran=max(frek) # menghitung maksimal frekuensinya
return(cat("Maksimum nya:", keluaran)) # print hasil dengan komentar
} # penutupan fungsi
max_frek(Lompatan, Frek) # menggunakan fungsi
## Maksimum nya: 20
Minimum
Lompatan <- seq (150, 200, 30) # masukan/argumen 1
Frek <-c(20, 10, 15, 14, 5, 1) # masukan/argumen 2
min_frek <- function(x,frek) # nama fungsi dan argumen
{ # pembukaan fungsi
keluaran=min(frek) # menghitung minimum frekuensinya
return(cat("Minimum nya:", keluaran)) # print hasil dengan komentar
} # penutupan fungsi
min_frek(Lompatan, Frek) # menggunakan fungsi
## Minimum nya: 1
Rata-rata
Lompatan <- seq (150, 200, 30) # masukan/argumen 1
Frek <-c(20, 10, 15, 14, 5, 1) # masukan/argumen 2
rata_frek <- function(x,frek) # nama fungsi dan argumen
{ # pembukaan fungsi
keluaran=sum(x*frek)/length(frek) # menghitung rata-rata frekuensinya
return(cat("Rata-rata nya:", keluaran)) # print hasil dengan komentar
} # penutupan fungsi
rata_frek(Lompatan, Frek) # menggunakan fungsi
## Rata-rata nya: 1750
Mode
Lompatan <- seq (150, 200, 30) # masukan/argumen 1
Frek <-c(20, 10, 15, 14, 5, 1) # masukan/argumen 2
mode_frek <- function(x,frek) # nama fungsi dan argumen
{ # pembukaan fungsi
keluaran=mode(frek) # menghitung mode/modus frekuensinya
return(cat("Mode/Modus nya:", keluaran)) # print hasil dengan komentar
} # penutupan fungsi
mode_frek(Lompatan, Frek) # menggunakan fungsi
## Mode/Modus nya: numeric
Variansi
Lompatan <- seq (150, 200, 30) # masukan/argumen 1
Frek <-c(20, 10, 15, 14, 5, 1) # masukan/argumen 2
var_frek <- function(x,frek) # nama fungsi dan argumen
{ # pembukaan fungsi
keluaran=var(frek) # menghitung variansi frekuensinya
return(cat("Variansi nya:", keluaran)) # print hasil dengan komentar
} # penutupan fungsi
var_frek(Lompatan, Frek) # menggunakan fungsi
## Variansi nya: 48.56667
Standard Deviasi
Lompatan <- seq (150, 200, 30) # masukan/argumen 1
Frek <-c(20, 10, 15, 14, 5, 1) # masukan/argumen 2
sqrt_frek <- function(x,frek) # nama fungsi dan argumen
{ # pembukaan fungsi
keluaran=sqrt(frek) # menghitung standard deviansi frekuensinya
return(cat("Standard Deviasi nya:", keluaran)) # print hasil dengan komentar
} # penutupan fungsi
sqrt_frek(Lompatan, Frek) # menggunakan fungsi
## Standard Deviasi nya: 4.472136 3.162278 3.872983 3.741657 2.236068 1
LS0tDQp0aXRsZTogIlR1Z2FzIDUiDQpzdWJ0aXRsZTogIkZ1bmdzaSINCmF1dGhvcjogIk5hZnRhbGkgQnJpZ2l0dGEgR3VuYXdhbiAoMjAyMTQ5MjAwMDIpIg0KZGF0ZTogImByIGZvcm1hdChTeXMuRGF0ZSgpLCAnJUIgJWQsICVZJylgIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDogDQogICAgaHRtbF9kb2N1bWVudDogbnVsbA0KICAgIGNvZGVfZm9sZGluZzogaGlkZQ0KICAgIHRvYzogeWVzDQogICAgdG9jX2Zsb2F0Og0KICAgICAgY29sbGFwc2VkOiB5ZXMNCiAgICBudW1iZXJfc2VjdGlvbnM6IHllcw0KICAgIGNvZGVfZG93bmxvYWQ6IHllcw0KICAgIHRoZW1lOiBzYW5kc3RvbmUNCiAgICBjc3M6IHN0eWxlMS5jc3MNCiAgICBoaWdobGlnaHQ6IG1vbm9jaHJvbWUNCi0tLQ0KDQoNCjxpbWcgc3R5bGU9ImZsb2F0OiByaWdodDsgbWFyZ2luOiAwcHggMTAwcHggMHB4IDBweDsgd2lkdGg6MjUlIiBzcmM9IkZPVE8gTkFGVEFMSS5qcGVnIi8+IA0KDQpgYGB7ciBsb2dvLCBlY2hvPUZBTFNFLGZpZy5hbGlnbj0nY2VudGVyJywgb3V0LndpZHRoID0gJzMwJSd9DQprbml0cjo6aW5jbHVkZV9ncmFwaGljcygibG9nbyBtYXRhbmEucG5nIikNCmBgYA0KDQpFbWFpbCAmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsmbmJzcDs6ICBuYWZ0YWxpLmd1bmF3YW5Ac3R1ZGVudC5tYXRhbmF1bml2ZXJzaXR5LmFjLmlkIDxicj4NClJQdWJzICAmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDs6IGh0dHBzOi8vcnB1YnMuY29tL25hZnRhbGlicmlnaXR0YS8gPGJyPg0KSnVydXNhbiAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7OiBbU3RhdGlzdGlrYSBCaXNuaXNdKGh0dHBzOi8vbWF0YW5hdW5pdmVyc2l0eS5hYy5pZC8/bHk9YWNhZGVtaWMmYz1zYikgPGJyPg0KQWRkcmVzcyAgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7IDogUGVydW1haGFuIENpYXRlciBQZXJtYWk8YnI+DQombmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyZuYnNwOyBKbC4gQW5nZ3JlayBJSUksIEJsb2sgQTUgTm8uIDEwLCBSVCAwMDEsIFJXIDAwNCwgU2VycG9uZywgVGFuZ2VyYW5nIFNlbGF0YW4sIEJhbnRlbiAxNTMxMC4NCg0KKioqKg0KIyBJbnRlcmdyYWwNCg0KIyMgVGVudHUNCmBgYHtyfQ0KbGlicmFyeShtb3NhaWNDYWxjKQ0Kew0KRiA9IGFudGlEKHheMys1KnggfiB4KQ0KfQ0KRih4ID0gNSkgLSBGKHggPSAzKQ0KYGBgDQoNCiMjIFRhayBUZW50dQ0KYGBge3J9DQpsaWJyYXJ5KG1vc2FpY0NhbGMpDQp7DQpGID0gYW50aUQoeF40IH4geCkNCn0NCkYNCmBgYA0KDQoNCiMgTGluZ2thcmFuIGRhbiBCb2xhDQojIyBMdWFzLCBLZWxpbGluZywgZGFuIFZvbHVtZQ0KYGBge3J9DQpsa2VsbHZvbCA8LSBmdW5jdGlvbijPgCxyKSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIG5hbWEgZnVuZ3NpIGRhbiBhcmd1bWVuDQp7ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgcGVtYnVrYWFuIGZ1bmdzaQ0KbHVhc19saW5na2FyYW4gPSDPgCpyXjIgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBtZW5naGl0dW5nIGx1YXMgbGluZ2thcmFuDQprZWxpbGluZ19saW5na2FyYW4gPSAyKs+AKnIgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIG1lbmdoaXR1bmcga2VsaWxpbmcgbGluZ2thcmFuDQp2b2x1bWVfYm9sYSA9IDQvMyrPgCpyXjMgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIG1lbmdoaXR1bmcgdm9sdW1lIGJvbGENCnJldHVybiAoY2F0KGMoIkx1YXMgTGluZ2thcmFuOiIsIGx1YXNfbGluZ2thcmFuLCBzZXAgPSAiXG4iLA0KICAgICAgICAgICAgICAiS2VsaWxpbmcgTGluZ2thcmFuOiIsIGtlbGlsaW5nX2xpbmdrYXJhbixzZXA9IlxuIiwNCiAgICAgICAgICAgICAgIlZvbHVtZSBCb2xhOiIsIHZvbHVtZV9ib2xhKSkpDQp9ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgcGVudXR1cGFuIGZ1bmdzaQ0KbGtlbGx2b2woMjIvNyw3KSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIG1lbmdndW5ha2FuIGZ1bmdzaQ0KYGBgDQoNCg0KIyBOaWxhaSBwYWRhIERhdGEgQmVyZnJla3VlbnNpDQp8fA0KfDotOnw6LTp8IA0KfCBMb21wYXRhbiAoZGFsYW0gY20pICB8IEZyZWt1ZW5zaSB8DQp8IDE1MCAgICAgICAgICAgICAgICAgIHwgMjAgICAgICAgIHwNCnwgMTYwICAgICAgICAgICAgICAgICAgfCAxMCAgICAgICAgfA0KfCAxNzAgICAgICAgICAgICAgICAgICB8IDE1ICAgICAgICB8DQp8IDE4MCAgICAgICAgICAgICAgICAgIHwgMTQgICAgICAgIHwNCnwgMTkwICAgICAgICAgICAgICAgICAgfCA1ICAgICAgICAgfA0KfCAyMDAgICAgICAgICAgICAgICAgICB8IDEgICAgICAgICB8IDxicj4NCg0KIyMgTWFrc2ltdW0NCmBgYHtyfQ0KTG9tcGF0YW4gPC0gc2VxICgxNTAsIDIwMCwgMzApICAgICAgICAgICAgICAjIG1hc3VrYW4vYXJndW1lbiAxDQpGcmVrIDwtYygyMCwgMTAsIDE1LCAxNCwgNSwgMSkgICAgICAgICAgICAgICMgbWFzdWthbi9hcmd1bWVuIDIgIA0KDQptYXhfZnJlayA8LSBmdW5jdGlvbih4LGZyZWspICAgICAgICAgICAgICAgICMgbmFtYSBmdW5nc2kgZGFuIGFyZ3VtZW4NCnsgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBwZW1idWthYW4gZnVuZ3NpDQprZWx1YXJhbj1tYXgoZnJlaykgICAgICAgICAgICAgICAgICAgICAgICAgICMgbWVuZ2hpdHVuZyBtYWtzaW1hbCBmcmVrdWVuc2lueWENCnJldHVybihjYXQoIk1ha3NpbXVtIG55YToiLCBrZWx1YXJhbikpICAgICAgIyBwcmludCBoYXNpbCBkZW5nYW4ga29tZW50YXINCn0gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBwZW51dHVwYW4gZnVuZ3NpDQptYXhfZnJlayhMb21wYXRhbiwgRnJlaykgICAgICAgICAgICAgICAgICAgICMgbWVuZ2d1bmFrYW4gZnVuZ3NpDQpgYGANCg0KIyMgTWluaW11bQ0KYGBge3J9DQpMb21wYXRhbiA8LSBzZXEgKDE1MCwgMjAwLCAzMCkgICAgICAgICAgICAgICMgbWFzdWthbi9hcmd1bWVuIDENCkZyZWsgPC1jKDIwLCAxMCwgMTUsIDE0LCA1LCAxKSAgICAgICAgICAgICAgIyBtYXN1a2FuL2FyZ3VtZW4gMiAgDQoNCm1pbl9mcmVrIDwtIGZ1bmN0aW9uKHgsZnJlaykgICAgICAgICAgICAgICAgIyBuYW1hIGZ1bmdzaSBkYW4gYXJndW1lbg0KeyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIHBlbWJ1a2FhbiBmdW5nc2kNCmtlbHVhcmFuPW1pbihmcmVrKSAgICAgICAgICAgICAgICAgICAgICAgICAgIyBtZW5naGl0dW5nIG1pbmltdW0gZnJla3VlbnNpbnlhDQpyZXR1cm4oY2F0KCJNaW5pbXVtIG55YToiLCBrZWx1YXJhbikpICAgICAgICMgcHJpbnQgaGFzaWwgZGVuZ2FuIGtvbWVudGFyDQp9ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgcGVudXR1cGFuIGZ1bmdzaQ0KbWluX2ZyZWsoTG9tcGF0YW4sIEZyZWspICAgICAgICAgICAgICAgICAgICAjIG1lbmdndW5ha2FuIGZ1bmdzaQ0KYGBgDQoNCiMjIFJhdGEtcmF0YQ0KYGBge3J9DQpMb21wYXRhbiA8LSBzZXEgKDE1MCwgMjAwLCAzMCkgICAgICAgICAgICAgICMgbWFzdWthbi9hcmd1bWVuIDENCkZyZWsgPC1jKDIwLCAxMCwgMTUsIDE0LCA1LCAxKSAgICAgICAgICAgICAgIyBtYXN1a2FuL2FyZ3VtZW4gMiAgDQoNCnJhdGFfZnJlayA8LSBmdW5jdGlvbih4LGZyZWspICAgICAgICAgICAgICAgIyBuYW1hIGZ1bmdzaSBkYW4gYXJndW1lbg0KeyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIHBlbWJ1a2FhbiBmdW5nc2kNCmtlbHVhcmFuPXN1bSh4KmZyZWspL2xlbmd0aChmcmVrKSAgICAgICAgICAgIyBtZW5naGl0dW5nIHJhdGEtcmF0YSBmcmVrdWVuc2lueWENCnJldHVybihjYXQoIlJhdGEtcmF0YSBueWE6Iiwga2VsdWFyYW4pKSAgICAgIyBwcmludCBoYXNpbCBkZW5nYW4ga29tZW50YXINCn0gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBwZW51dHVwYW4gZnVuZ3NpDQpyYXRhX2ZyZWsoTG9tcGF0YW4sIEZyZWspICAgICAgICAgICAgICAgICAgICMgbWVuZ2d1bmFrYW4gZnVuZ3NpDQpgYGANCg0KIyMgTWVkaWFuDQpgYGB7cn0NCkxvbXBhdGFuIDwtIHNlcSAoMTUwLCAyMDAsIDMwKSAgICAgICAgICAgICAgIyBtYXN1a2FuL2FyZ3VtZW4gMQ0KRnJlayA8LWMoMjAsIDEwLCAxNSwgMTQsIDUsIDEpICAgICAgICAgICAgICAjIG1hc3VrYW4vYXJndW1lbiAyICANCg0KbWVkaWFuX2ZyZWsgPC0gZnVuY3Rpb24oeCxmcmVrKSAgICAgICAgICAgICAjIG5hbWEgZnVuZ3NpIGRhbiBhcmd1bWVuDQp7ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgcGVtYnVrYWFuIGZ1bmdzaQ0Ka2VsdWFyYW49bWVkaWFuKGZyZWspICAgICAgICAgICAgICAgICAgICAgICAjIG1lbmdoaXR1bmcgbWVkaWFuIGZyZWt1ZW5zaW55YQ0KcmV0dXJuKGNhdCgiTWVkaWFuIG55YToiLCBrZWx1YXJhbikpICAgICAgICAjIHByaW50IGhhc2lsIGRlbmdhbiBrb21lbnRhcg0KfSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIHBlbnV0dXBhbiBmdW5nc2kNCm1lZGlhbl9mcmVrKExvbXBhdGFuLCBGcmVrKSAgICAgICAgICAgICAgICAgIyBtZW5nZ3VuYWthbiBmdW5nc2kNCmBgYA0KDQojIyBNb2RlDQpgYGB7cn0NCkxvbXBhdGFuIDwtIHNlcSAoMTUwLCAyMDAsIDMwKSAgICAgICAgICAgICAgIyBtYXN1a2FuL2FyZ3VtZW4gMQ0KRnJlayA8LWMoMjAsIDEwLCAxNSwgMTQsIDUsIDEpICAgICAgICAgICAgICAjIG1hc3VrYW4vYXJndW1lbiAyICANCg0KbW9kZV9mcmVrIDwtIGZ1bmN0aW9uKHgsZnJlaykgICAgICAgICAgICAgICAjIG5hbWEgZnVuZ3NpIGRhbiBhcmd1bWVuDQp7ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgcGVtYnVrYWFuIGZ1bmdzaQ0Ka2VsdWFyYW49bW9kZShmcmVrKSAgICAgICAgICAgICAgICAgICAgICAgICAjIG1lbmdoaXR1bmcgbW9kZS9tb2R1cyBmcmVrdWVuc2lueWENCnJldHVybihjYXQoIk1vZGUvTW9kdXMgbnlhOiIsIGtlbHVhcmFuKSkgICAgIyBwcmludCBoYXNpbCBkZW5nYW4ga29tZW50YXINCn0gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBwZW51dHVwYW4gZnVuZ3NpDQptb2RlX2ZyZWsoTG9tcGF0YW4sIEZyZWspICAgICAgICAgICAgICAgICAgICMgbWVuZ2d1bmFrYW4gZnVuZ3NpDQpgYGANCg0KIyMgVmFyaWFuc2kNCmBgYHtyfQ0KTG9tcGF0YW4gPC0gc2VxICgxNTAsIDIwMCwgMzApICAgICAgICAgICAgICAjIG1hc3VrYW4vYXJndW1lbiAxDQpGcmVrIDwtYygyMCwgMTAsIDE1LCAxNCwgNSwgMSkgICAgICAgICAgICAgICMgbWFzdWthbi9hcmd1bWVuIDIgIA0KDQp2YXJfZnJlayA8LSBmdW5jdGlvbih4LGZyZWspICAgICAgICAgICAgICAgICMgbmFtYSBmdW5nc2kgZGFuIGFyZ3VtZW4NCnsgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBwZW1idWthYW4gZnVuZ3NpDQprZWx1YXJhbj12YXIoZnJlaykgICAgICAgICAgICAgICAgICAgICAgICAgICMgbWVuZ2hpdHVuZyB2YXJpYW5zaSBmcmVrdWVuc2lueWENCnJldHVybihjYXQoIlZhcmlhbnNpIG55YToiLCBrZWx1YXJhbikpICAgICAgIyBwcmludCBoYXNpbCBkZW5nYW4ga29tZW50YXINCn0gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBwZW51dHVwYW4gZnVuZ3NpDQp2YXJfZnJlayhMb21wYXRhbiwgRnJlaykgICAgICAgICAgICAgICAgICAgICMgbWVuZ2d1bmFrYW4gZnVuZ3NpDQpgYGANCg0KIyMgU3RhbmRhcmQgRGV2aWFzaSANCmBgYHtyfQ0KTG9tcGF0YW4gPC0gc2VxICgxNTAsIDIwMCwgMzApICAgICAgICAgICAgICAgICAgIyBtYXN1a2FuL2FyZ3VtZW4gMQ0KRnJlayA8LWMoMjAsIDEwLCAxNSwgMTQsIDUsIDEpICAgICAgICAgICAgICAgICAgIyBtYXN1a2FuL2FyZ3VtZW4gMiAgDQoNCnNxcnRfZnJlayA8LSBmdW5jdGlvbih4LGZyZWspICAgICAgICAgICAgICAgICAgICMgbmFtYSBmdW5nc2kgZGFuIGFyZ3VtZW4NCnsgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgcGVtYnVrYWFuIGZ1bmdzaQ0Ka2VsdWFyYW49c3FydChmcmVrKSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBtZW5naGl0dW5nIHN0YW5kYXJkIGRldmlhbnNpIGZyZWt1ZW5zaW55YQ0KcmV0dXJuKGNhdCgiU3RhbmRhcmQgRGV2aWFzaSBueWE6Iiwga2VsdWFyYW4pKSAgIyBwcmludCBoYXNpbCBkZW5nYW4ga29tZW50YXINCn0gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgcGVudXR1cGFuIGZ1bmdzaQ0Kc3FydF9mcmVrKExvbXBhdGFuLCBGcmVrKSAgICAgICAgICAgICAgICAgICAgICAgIyBtZW5nZ3VuYWthbiBmdW5nc2kNCmBgYA0K