Following the RandomForest Classification, the severe damage class (target class) is of interest. below is an interactive map showing Severe Damages Pixels Density per Operational Zone. Density is calculated using the ‘Severe Damage’ class pixels count obtained from QGIS using the zonal statistics plugin.
library(spatstat)
library(here)
library(sp)
library(rgeos)
library(maptools)
library(GISTools)
library(tmap)
library(sf)
library(geojson)
library(geojsonio)
library(tmaptools)
library(dplyr)
library(stringr)
library(readr)
library(rgdal)
library(tmap)
library(janitor)
library(ggplot2)
library(raster)
library(fpc)
library(dbscan)
library(tidyverse)
library(tidyr)
#get the shapefile
Raster_cell_count_per_zones <-
st_read(here::here("data", "Raster_cell_count_per_zones.shp"))
## Reading layer `Raster_cell_count_per_zones' from data source
## `C:\Users\saram\Desktop\Dissertation\GIS_Final_Coursework\data\Raster_cell_count_per_zones.shp'
## using driver `ESRI Shapefile'
## Simple feature collection with 139 features and 27 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: 35.49469 ymin: 33.86149 xmax: 35.5527 ymax: 33.90946
## Geodetic CRS: WGS 84
#get the density
density<-Raster_cell_count_per_zones%>%
#calculate area
mutate(area=st_area(.))%>%
#then density of the points per ward
mutate(density_raster=z_count/area)%>%
#select density and some other variables
dplyr::select(density_raster, zone_numbe, Cadaster_1,z_count)
tmap_mode("view")
#breaks = c(4, 4.15, 4.3, 4.45, 4.6,4.757)
breaks = c(4.7495,4.7510,4.7515,4.7520,4.7525,4.7530,4.7535,4.7540,4.7545,4.7550,4.7555,4.7560,4.7565)
dm1 <- tm_shape(density) +
tm_borders("white")+
tm_polygons("density_raster",
title = "Severe Damage Density",
breaks=breaks,
palette="BuPu",
alpha = 0.7,
style = "cont",
border.col = "white") +
tm_scale_bar(position=c(0.01,0.1),text.size=0.5,color.dark = "grey46")+
tm_layout(title = "Severe Damage Pixels Density per Operational Zone",title.size = 2,frame=FALSE)
dm1