Email             :
RPubs            : https://rpubs.com/diyasarya/
Jurusan          : Statistika
Address         : ARA Center, Matana University Tower
                         Jl. CBD Barat Kav, RT.1, Curug Sangereng, Kelapa Dua, Tangerang, Banten 15810.


1 1. Intergral Tentu dan Tak Tentu.

library(mosaicCalc)

Fungsi= makeFun(x^2~x)

IntegTentudanTakTentu <- function(x)
{
  Integral= antiD(Fungsi(x)~x)
  Integral_Tentu= Integral(1)-Integral(3)
  Integral_Tak_Tentu= Integral(1:5)
  return (cat(c("Integral Tentu :", Integral_Tentu, "\n",
                "Integral Tak Tentu :", Integral_Tak_Tentu)))
}
IntegTentudanTakTentu(x)
## Integral Tentu : -8.66666666666667 
##  Integral Tak Tentu : 0.333333333333333 2.66666666666667 9 21.3333333333333 41.6666666666667

2 2. Luas Lingkaran, Keliling Lingkaran, dan, Volume Bola.

Panjang jari-jari ban sepeda adalah 50 cm. Tentukanlah luas ban sepeda tersebut dan keliling ban sepeda tersebut.

luas_keliling <- function(π, r)               # Nama fungsi dan argumen
{
  luas= π*r^2                                 # Rumus luas permukaan lingkaran
  keliling= 2*π*r                             # Rumus keliling lingkaran
  volume= 4/3*π*r^3                           # Rumus volume bola
  return (cat(c("luas :", luas, "\n",          
                "keliling :", keliling, "\n",
                "volume :", volume)))
}

luas_keliling(pi, 50)                        # Nilai fungsi
## luas : 7853.98163397448 
##  keliling : 314.159265358979 
##  volume : 523598.775598299

3 3. Nilai Maksimum, Minimum, Rata-rata, Median, Mode, Variansi, Standard Deviasi pada data berfrekuensi.

Diberikan sebuah data suatu sekolah yaitu rata" nilai ujian matematika seluruh kelas 12 yang memenuhi kkm (70) ada 70 siswa.

Nilai Frekuensi
70 6
75 7
80 18
85 5
90 14
95 11
100 9

Maka tentukanlah Nilai Maksimum, Minimum, Rata-rata, Median, Mode, Variansi, Standard Deviasi pada data diatas.

Nilai<-seq(70, 100, 5)
Frekuensi<-c(6, 7, 18, 5, 14, 11, 9)

#diketahui
L = 80-0.5                    # Tepi bawah Modus
d1mo = 18-7                   # Frekuensi tertinggi dikurang Frekuensi sebelumnya
d2mo = 18-5                   # Frekuensi Tertinggi dikurang Frekuensi sesudahnya
c = 5                         # Panjang kelas atau Interval kelas
n = 70                        # Jumlah Frekuensi
Tb = 85-0.5                   # Tepi bawah Median
d1med = 18+7+6                # Frekuensi kumulatif sebelum Frekuensi Median
d2med = 5                     # Frekuensi Median


Statistika <- function(x, Frekuensi)
{
  Nilai_Maks= max(x)
  Nilai_Min= min(x)
  Rata_rata= sum(x*Frekuensi)/n
  Median= Tb+((n/2-d1med)/d2med)*c
  Mode= L+(d1mo/(d1mo+d2mo))*c
  Y= x-Rata_rata
  Variansi= 1/(n-1)*(sum(Frekuensi*(Y)^2))
  Standar_Deviasi= sqrt(Variansi)
  return(cat("Nilai Maksimum :", Nilai_Maks, "\n",
             "Nilai Minimum :", Nilai_Min, "\n",
             "Rerata :", Rata_rata, "\n",
             "Median :", Median, "\n",
             "Mode :", Mode, "\n",
             "Variansi :", Variansi, "\n",
             "Standar Deviasi :", Standar_Deviasi))
}

Statistika(Nilai, Frekuensi)
## Nilai Maksimum : 100 
##  Nilai Minimum : 70 
##  Rerata : 85.92857 
##  Median : 88.5 
##  Mode : 81.79167 
##  Variansi : 85.71946 
##  Standar Deviasi : 9.258481
LS0tDQp0aXRsZTogIlR1Z2FzIDYiDQpzdWJ0aXRsZTogIkFsZ29yaXRtYSBkYW4gU3RydWt0dXIgRGF0YSINCmF1dGhvcjogIkRpeWFzIEFyeWEgTnVncm9obyAoMjAyMTQ5MjAwMDcpIg0KZGF0ZTogImByIGZvcm1hdChTeXMuRGF0ZSgpLCAnJUIgJWQsICVZJylgIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDogDQogICAgaHRtbF9kb2N1bWVudDogbnVsbA0KICAgIGNvZGVfZm9sZGluZzogaGlkZQ0KICAgIHRvYzogeWVzDQogICAgdG9jX2Zsb2F0Og0KICAgICAgY29sbGFwc2VkOiB5ZXMNCiAgICBudW1iZXJfc2VjdGlvbnM6IHllcw0KICAgIGNvZGVfZG93bmxvYWQ6IHllcw0KICAgIHRoZW1lOiBzYW5kc3RvbmUNCiAgICBjc3M6IHN0eWxlMS5jc3MNCiAgICBoaWdobGlnaHQ6IG1vbm9jaHJvbWUNCi0tLQ0KDQo8aW1nIHN0eWxlPSJmbG9hdDogcmlnaHQ7IG1hcmdpbjogMHB4IDEwMHB4IDBweCAwcHg7IHdpZHRoOjI1JSIgc3JjPSJwcm9maWwucG5nIi8+IA0KDQpgYGB7ciBsb2dvLCBlY2hvPUZBTFNFLGZpZy5hbGlnbj0nY2VudGVyJywgb3V0LndpZHRoID0gJzMwJSd9DQprbml0cjo6aW5jbHVkZV9ncmFwaGljcygibG9nb21hdGFuYS5wbmciKQ0KYGBgDQoNCkVtYWlsICZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyZuYnNwOzogZGl5YXNhcnlhbnVncm9ob0BnbWFpbC5jb20gPGJyPg0KUlB1YnMgICZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOzogaHR0cHM6Ly9ycHVicy5jb20vZGl5YXNhcnlhLyA8YnI+DQpKdXJ1c2FuICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDs6IFtTdGF0aXN0aWthXShodHRwczovL21hdGFuYXVuaXZlcnNpdHkuYWMuaWQvP2x5PWFjYWRlbWljJmM9c2IpIDxicj4NCkFkZHJlc3MgICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyA6IEFSQSBDZW50ZXIsIE1hdGFuYSBVbml2ZXJzaXR5IFRvd2VyIDxicj4NCiZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7Jm5ic3A7IEpsLiBDQkQgQmFyYXQgS2F2LCBSVC4xLCBDdXJ1ZyBTYW5nZXJlbmcsIEtlbGFwYSBEdWEsIFRhbmdlcmFuZywgQmFudGVuIDE1ODEwLg0KDQoqKioqDQoNCiMgMS4gSW50ZXJncmFsIFRlbnR1IGRhbiBUYWsgVGVudHUuDQoNCmBgYHtyLCBtZXNzYWdlPUZBTFNFfQ0KbGlicmFyeShtb3NhaWNDYWxjKQ0KDQpGdW5nc2k9IG1ha2VGdW4oeF4yfngpDQoNCkludGVnVGVudHVkYW5UYWtUZW50dSA8LSBmdW5jdGlvbih4KQ0Kew0KICBJbnRlZ3JhbD0gYW50aUQoRnVuZ3NpKHgpfngpDQogIEludGVncmFsX1RlbnR1PSBJbnRlZ3JhbCgxKS1JbnRlZ3JhbCgzKQ0KICBJbnRlZ3JhbF9UYWtfVGVudHU9IEludGVncmFsKDE6NSkNCiAgcmV0dXJuIChjYXQoYygiSW50ZWdyYWwgVGVudHUgOiIsIEludGVncmFsX1RlbnR1LCAiXG4iLA0KICAgICAgICAgICAgICAgICJJbnRlZ3JhbCBUYWsgVGVudHUgOiIsIEludGVncmFsX1Rha19UZW50dSkpKQ0KfQ0KSW50ZWdUZW50dWRhblRha1RlbnR1KHgpDQpgYGANCg0KIyAyLiBMdWFzIExpbmdrYXJhbiwgS2VsaWxpbmcgTGluZ2thcmFuLCBkYW4sIFZvbHVtZSBCb2xhLg0KDQpQYW5qYW5nIGphcmktamFyaSBiYW4gc2VwZWRhIGFkYWxhaCA1MCBjbS4gVGVudHVrYW5sYWggbHVhcyBiYW4gc2VwZWRhIHRlcnNlYnV0IGRhbiBrZWxpbGluZyBiYW4gc2VwZWRhIHRlcnNlYnV0Lg0KDQpgYGB7cn0NCmx1YXNfa2VsaWxpbmcgPC0gZnVuY3Rpb24oz4AsIHIpICAgICAgICAgICAgICAgIyBOYW1hIGZ1bmdzaSBkYW4gYXJndW1lbg0Kew0KICBsdWFzPSDPgCpyXjIgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIFJ1bXVzIGx1YXMgcGVybXVrYWFuIGxpbmdrYXJhbg0KICBrZWxpbGluZz0gMirPgCpyICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIFJ1bXVzIGtlbGlsaW5nIGxpbmdrYXJhbg0KICB2b2x1bWU9IDQvMyrPgCpyXjMgICAgICAgICAgICAgICAgICAgICAgICAgICAjIFJ1bXVzIHZvbHVtZSBib2xhDQogIHJldHVybiAoY2F0KGMoImx1YXMgOiIsIGx1YXMsICJcbiIsICAgICAgICAgIA0KICAgICAgICAgICAgICAgICJrZWxpbGluZyA6Iiwga2VsaWxpbmcsICJcbiIsDQogICAgICAgICAgICAgICAgInZvbHVtZSA6Iiwgdm9sdW1lKSkpDQp9DQoNCmx1YXNfa2VsaWxpbmcocGksIDUwKSAgICAgICAgICAgICAgICAgICAgICAgICMgTmlsYWkgZnVuZ3NpDQpgYGANCiMgMy4gTmlsYWkgTWFrc2ltdW0sIE1pbmltdW0sIFJhdGEtcmF0YSwgTWVkaWFuLCBNb2RlLCBWYXJpYW5zaSwgU3RhbmRhcmQgRGV2aWFzaSBwYWRhIGRhdGEgYmVyZnJla3VlbnNpLg0KDQpEaWJlcmlrYW4gc2VidWFoIGRhdGEgc3VhdHUgc2Vrb2xhaCB5YWl0dSByYXRhIiBuaWxhaSB1amlhbiBtYXRlbWF0aWthIHNlbHVydWgga2VsYXMgMTIgeWFuZyBtZW1lbnVoaSBra20gKDcwKSBhZGEgNzAgc2lzd2EuDQoNCnxOaWxhaXxGcmVrdWVuc2l8DQp8Oi0tLTp8Oi0tLS0tLS06fA0KfDcwfDZ8DQp8NzV8N3wNCnw4MHwxOHwNCnw4NXw1fA0KfDkwfDE0fA0KfDk1fDExfA0KfDEwMHw5fA0KDQpNYWthIHRlbnR1a2FubGFoIE5pbGFpIE1ha3NpbXVtLCBNaW5pbXVtLCBSYXRhLXJhdGEsIE1lZGlhbiwgTW9kZSwgVmFyaWFuc2ksIFN0YW5kYXJkIERldmlhc2kgcGFkYSBkYXRhIGRpYXRhcy4NCg0KYGBge3J9DQpOaWxhaTwtc2VxKDcwLCAxMDAsIDUpDQpGcmVrdWVuc2k8LWMoNiwgNywgMTgsIDUsIDE0LCAxMSwgOSkNCg0KI2Rpa2V0YWh1aQ0KTCA9IDgwLTAuNSAgICAgICAgICAgICAgICAgICAgIyBUZXBpIGJhd2FoIE1vZHVzDQpkMW1vID0gMTgtNyAgICAgICAgICAgICAgICAgICAjIEZyZWt1ZW5zaSB0ZXJ0aW5nZ2kgZGlrdXJhbmcgRnJla3VlbnNpIHNlYmVsdW1ueWENCmQybW8gPSAxOC01ICAgICAgICAgICAgICAgICAgICMgRnJla3VlbnNpIFRlcnRpbmdnaSBkaWt1cmFuZyBGcmVrdWVuc2kgc2VzdWRhaG55YQ0KYyA9IDUgICAgICAgICAgICAgICAgICAgICAgICAgIyBQYW5qYW5nIGtlbGFzIGF0YXUgSW50ZXJ2YWwga2VsYXMNCm4gPSA3MCAgICAgICAgICAgICAgICAgICAgICAgICMgSnVtbGFoIEZyZWt1ZW5zaQ0KVGIgPSA4NS0wLjUgICAgICAgICAgICAgICAgICAgIyBUZXBpIGJhd2FoIE1lZGlhbg0KZDFtZWQgPSAxOCs3KzYgICAgICAgICAgICAgICAgIyBGcmVrdWVuc2kga3VtdWxhdGlmIHNlYmVsdW0gRnJla3VlbnNpIE1lZGlhbg0KZDJtZWQgPSA1ICAgICAgICAgICAgICAgICAgICAgIyBGcmVrdWVuc2kgTWVkaWFuDQoNCg0KU3RhdGlzdGlrYSA8LSBmdW5jdGlvbih4LCBGcmVrdWVuc2kpDQp7DQogIE5pbGFpX01ha3M9IG1heCh4KQ0KICBOaWxhaV9NaW49IG1pbih4KQ0KICBSYXRhX3JhdGE9IHN1bSh4KkZyZWt1ZW5zaSkvbg0KICBNZWRpYW49IFRiKygobi8yLWQxbWVkKS9kMm1lZCkqYw0KICBNb2RlPSBMKyhkMW1vLyhkMW1vK2QybW8pKSpjDQogIFk9IHgtUmF0YV9yYXRhDQogIFZhcmlhbnNpPSAxLyhuLTEpKihzdW0oRnJla3VlbnNpKihZKV4yKSkNCiAgU3RhbmRhcl9EZXZpYXNpPSBzcXJ0KFZhcmlhbnNpKQ0KICByZXR1cm4oY2F0KCJOaWxhaSBNYWtzaW11bSA6IiwgTmlsYWlfTWFrcywgIlxuIiwNCiAgICAgICAgICAgICAiTmlsYWkgTWluaW11bSA6IiwgTmlsYWlfTWluLCAiXG4iLA0KICAgICAgICAgICAgICJSZXJhdGEgOiIsIFJhdGFfcmF0YSwgIlxuIiwNCiAgICAgICAgICAgICAiTWVkaWFuIDoiLCBNZWRpYW4sICJcbiIsDQogICAgICAgICAgICAgIk1vZGUgOiIsIE1vZGUsICJcbiIsDQogICAgICAgICAgICAgIlZhcmlhbnNpIDoiLCBWYXJpYW5zaSwgIlxuIiwNCiAgICAgICAgICAgICAiU3RhbmRhciBEZXZpYXNpIDoiLCBTdGFuZGFyX0Rldmlhc2kpKQ0KfQ0KDQpTdGF0aXN0aWthKE5pbGFpLCBGcmVrdWVuc2kpDQpgYGANCg0K