## [1] 1305 11
## [1] "Internal ID" "Encounter Date"
## [3] "Age" "Sex"
## [5] "Race" "Ethnicity"
## [7] "Coverage" "GAD-7"
## [9] "Last Question 9 Response" "PHQ-9"
## [11] "Patient Disposition"
## [1] 792 22
## [1] "ZID"
## [2] "Visit_Date"
## [3] "Encounter_Date"
## [4] "Visit_Type"
## [5] "new_CSQ1"
## [6] "new_CSQ2"
## [7] "new_CSQ3"
## [8] "new_CSQ4"
## [9] "new_CSQ5"
## [10] "new_CSQ6"
## [11] "new_CSQ7"
## [12] "new_CSQ8"
## [13] "new_CSQ9"
## [14] "new_CSQ10"
## [15] "new_CSQ11"
## [16] "new_CSQ12"
## [17] "new_CSQ13"
## [18] "new_CSQ14"
## [19] "new_CSQ_Healthrelatedstressors"
## [20] "new_CSQ_nonpsychhealthrelatedstressors"
## [21] "new_CSQ15"
## [22] "new_CSQ15 reorganized"
## [1] 792 23
#Factors vs. numeric variables
PUCC_final[,c("Sex", "Race", "Ethnicity")] <- lapply(PUCC_final[,c("Sex", "Race", "Ethnicity")], as.factor)
PUCC_final[,c("Age", "PHQ9_tot", "GAD7_tot")] <- lapply(PUCC_final[,c("Age", "PHQ9_tot", "GAD7_tot")], as.numeric)
## Warning in lapply(PUCC_final[, c("Age", "PHQ9_tot", "GAD7_tot")], as.numeric):
## NAs introduced by coercion
#PHQ9 and GAD7 by cut scores
PUCC_final$PHQ9_cut <- cut(PUCC_final$PHQ9_tot, breaks = c(0, 5, 10, 15, 20, 27))
levels(PUCC_final$PHQ9_cut) <- c("Minimal depression", "Mild depression", "Moderate depression", "Moderately severe depression", "Severe depression")
PUCC_final$GAD7_cut <- cut(PUCC_final$GAD7_tot, breaks = c(0, 5, 10, 15, 21))
levels(PUCC_final$GAD7_cut) <- c("Minimal anxiety", "Mild anxiety", "Moderate anxiety", "Severe anxiety")
#PHQ9 and GAD7 by dichotomous (Severe vs. not severe)
PUCC_final$PHQ9_severe <- cut(PUCC_final$PHQ9_tot, breaks = c(0, 15,27))
levels(PUCC_final$PHQ9_severe) <- c("Minimal to moderate depression", "Severe depression")
PUCC_final$GAD7_severe<- cut(PUCC_final$GAD7_tot, breaks = c(0, 15,21))
levels(PUCC_final$GAD7_severe) <- c("Minimal to moderate anxiety", "Severe anxiety")
#PHQ9 and GAD7 by dichotomous (Moderate to severe vs. mild)
PUCC_final$PHQ9_moderate <- cut(PUCC_final$PHQ9_tot, breaks = c(0, 10,27))
levels(PUCC_final$PHQ9_moderate) <- c("Mild depression", "Moderate to severe depression")
PUCC_final$GAD7_moderate<- cut(PUCC_final$GAD7_tot, breaks = c(0, 10,21))
levels(PUCC_final$GAD7_moderate) <- c("Mild anxiety", "Moderate to severe anxiety")
#Sex variable - assigning reference group as female
PUCC_final$Sex<-relevel(PUCC_final$Sex, "Female")
#Age bracket variable - assigning ages to 5 brackets
PUCC_final$Age_cut <- cut(PUCC_final$Age, breaks = c(18, 25, 49 , 65, 80, 95))
levels(PUCC_final$Age_cut) <- c("18-25 years", "26-49 years", "50-65 years", "66-80 years", "81-95 years")
table(PUCC_final$Age_cut )
##
## 18-25 years 26-49 years 50-65 years 66-80 years 81-95 years
## 211 401 101 44 11
#Race and ethnicity variable - assigning dichotomous levels and reference groups
PUCC_final$Ethnicity<-ifelse(PUCC_final$Ethnicity=="Not Hispanic, Latino/a, or Spanish origin [1]", "Not Hispanic", ifelse(PUCC_final$Ethnicity=="Unknown [3]" | PUCC_final$Ethnicity=="Decline to Answer [4] ", "Other", "Hispanic"))
PUCC_final$Ethnicity<-as.factor(PUCC_final$Ethnicity)
PUCC_final$Ethnicity<-relevel(PUCC_final$Ethnicity, "Not Hispanic")
table(PUCC_final$Ethnicity )
##
## Not Hispanic Hispanic Other
## 571 50 145
PUCC_final$Race<-ifelse(PUCC_final$Race=="White", "White", ifelse(PUCC_final$Race=="Black or African American", "Black", "Other"))
PUCC_final$Race<-as.factor(PUCC_final$Race)
table(PUCC_final$Race)
##
## Black Other White
## 47 152 570
PUCC_final$Race<-relevel(PUCC_final$Race, "White")
table(PUCC_final$Race )
##
## White Black Other
## 570 47 152
#CSQ_tot variable
CSQ_data <- c("new_CSQ1", "new_CSQ2", "new_CSQ3", "new_CSQ4", "new_CSQ5", "new_CSQ6",
"new_CSQ7","new_CSQ8","new_CSQ9", "new_CSQ10", "new_CSQ11", "new_CSQ12",
"new_CSQ13","new_CSQ_Healthrelatedstressors","new_CSQ_nonpsychhealthrelatedstressors")
PUCC_final[,CSQ_data] <- lapply(PUCC_final[,CSQ_data], as.numeric)
PUCC_final$CSQ_tot<-rowSums(PUCC_final[ ,CSQ_data])
PUCC_final[,CSQ_data] <- lapply(PUCC_final[,CSQ_data], as.factor)
#reorder vars in df
PUCC_FIN<-PUCC_final %>% dplyr::select("ZID", "Encounter_Date", "Sex", "Age", "Race", "Ethnicity", "new_CSQ1", "new_CSQ2", "new_CSQ3", "new_CSQ4", "new_CSQ5", "new_CSQ6","new_CSQ7","new_CSQ8","new_CSQ9", "new_CSQ10", "new_CSQ11", "new_CSQ12", "new_CSQ13","new_CSQ_Healthrelatedstressors","new_CSQ_nonpsychhealthrelatedstressors", "CSQ_tot", "PHQ9_tot", "PHQ9_cut", "PHQ9_severe", "PHQ9_moderate", "GAD7_tot", "GAD7_cut", "GAD7_severe", "GAD7_moderate")
# % Missingness across all variables
purrr::map(PUCC_FIN, ~mean(is.na(.)))
## $ZID
## [1] 0
##
## $Encounter_Date
## [1] 0
##
## $Sex
## [1] 0.0290404
##
## $Age
## [1] 0.03030303
##
## $Race
## [1] 0.0290404
##
## $Ethnicity
## [1] 0.03282828
##
## $new_CSQ1
## [1] 0
##
## $new_CSQ2
## [1] 0
##
## $new_CSQ3
## [1] 0
##
## $new_CSQ4
## [1] 0
##
## $new_CSQ5
## [1] 0
##
## $new_CSQ6
## [1] 0
##
## $new_CSQ7
## [1] 0
##
## $new_CSQ8
## [1] 0
##
## $new_CSQ9
## [1] 0
##
## $new_CSQ10
## [1] 0
##
## $new_CSQ11
## [1] 0
##
## $new_CSQ12
## [1] 0
##
## $new_CSQ13
## [1] 0
##
## $new_CSQ_Healthrelatedstressors
## [1] 0
##
## $new_CSQ_nonpsychhealthrelatedstressors
## [1] 0
##
## $CSQ_tot
## [1] 0
##
## $PHQ9_tot
## [1] 0.1401515
##
## $PHQ9_cut
## [1] 0.1502525
##
## $PHQ9_severe
## [1] 0.1502525
##
## $PHQ9_moderate
## [1] 0.1502525
##
## $GAD7_tot
## [1] 0.1363636
##
## $GAD7_cut
## [1] 0.1464646
##
## $GAD7_severe
## [1] 0.1464646
##
## $GAD7_moderate
## [1] 0.1464646
COMMENTARY: here we see the percent missingness per variable
PUCC_FIN %>% dplyr::select(-ZID, -Encounter_Date) %>% gtsummary::tbl_summary()
| Characteristic | N = 7921 |
|---|---|
| Sex | |
| Female | 437 (57%) |
| Male | 332 (43%) |
| Unknown | 23 |
| Age | 32 (25, 46) |
| Unknown | 24 |
| Race | |
| White | 570 (74%) |
| Black | 47 (6.1%) |
| Other | 152 (20%) |
| Unknown | 23 |
| Ethnicity | |
| Not Hispanic | 571 (75%) |
| Hispanic | 50 (6.5%) |
| Other | 145 (19%) |
| Unknown | 26 |
| new_CSQ1 | |
| 0 | 522 (66%) |
| 1 | 270 (34%) |
| new_CSQ2 | |
| 0 | 734 (93%) |
| 1 | 58 (7.3%) |
| new_CSQ3 | |
| 0 | 528 (67%) |
| 1 | 264 (33%) |
| new_CSQ4 | |
| 0 | 481 (61%) |
| 1 | 311 (39%) |
| new_CSQ5 | |
| 0 | 705 (89%) |
| 1 | 87 (11%) |
| new_CSQ6 | |
| 0 | 631 (80%) |
| 1 | 161 (20%) |
| new_CSQ7 | |
| 0 | 622 (79%) |
| 1 | 170 (21%) |
| new_CSQ8 | |
| 0 | 729 (92%) |
| 1 | 63 (8.0%) |
| new_CSQ9 | |
| 0 | 590 (74%) |
| 1 | 202 (26%) |
| new_CSQ10 | |
| 0 | 649 (82%) |
| 1 | 143 (18%) |
| new_CSQ11 | |
| 0 | 737 (93%) |
| 1 | 55 (6.9%) |
| new_CSQ12 | |
| 0 | 595 (75%) |
| 1 | 197 (25%) |
| new_CSQ13 | |
| 0 | 473 (60%) |
| 1 | 319 (40%) |
| new_CSQ_Healthrelatedstressors | |
| 0 | 720 (91%) |
| 1 | 72 (9.1%) |
| new_CSQ_nonpsychhealthrelatedstressors | |
| 0 | 767 (97%) |
| 1 | 25 (3.2%) |
| CSQ_tot | 3.00 (1.00, 4.00) |
| PHQ9_tot | 18 (12, 22) |
| Unknown | 111 |
| PHQ9_cut | |
| Minimal depression | 39 (5.8%) |
| Mild depression | 76 (11%) |
| Moderate depression | 141 (21%) |
| Moderately severe depression | 196 (29%) |
| Severe depression | 221 (33%) |
| Unknown | 119 |
| PHQ9_severe | |
| Minimal to moderate depression | 256 (38%) |
| Severe depression | 417 (62%) |
| Unknown | 119 |
| PHQ9_moderate | |
| Mild depression | 115 (17%) |
| Moderate to severe depression | 558 (83%) |
| Unknown | 119 |
| GAD7_tot | 17.0 (12.0, 20.0) |
| Unknown | 108 |
| GAD7_cut | |
| Minimal anxiety | 39 (5.8%) |
| Mild anxiety | 75 (11%) |
| Moderate anxiety | 149 (22%) |
| Severe anxiety | 413 (61%) |
| Unknown | 116 |
| GAD7_severe | |
| Minimal to moderate anxiety | 263 (39%) |
| Severe anxiety | 413 (61%) |
| Unknown | 116 |
| GAD7_moderate | |
| Mild anxiety | 114 (17%) |
| Moderate to severe anxiety | 562 (83%) |
| Unknown | 116 |
|
1
n (%); Median (IQR)
|
|
#Distribution of PHQ9_tot variable
hist(PUCC_FIN$PHQ9_tot) #L skew
shapiro.test(PUCC_FIN$PHQ9_tot) #p<0.001 - not normally distributed
##
## Shapiro-Wilk normality test
##
## data: PUCC_FIN$PHQ9_tot
## W = 0.96355, p-value = 5.683e-12
#Distribution of PHQ9_tot residuals
mod_PHQ9<-lm(PHQ9_tot~Age, data=PUCC_FIN)
plot(mod_PHQ9)
COMMENTARY: the Q-Q plot for PHQ9 looks a lot better than GAD7. That’s okay since I dont think we’ll be using GAD7 as an outcome for this analysis.
#Covariate screen by PHQ_tot (continuous)
PUCC_FIN %>%
dplyr::select(-ZID, -Encounter_Date, -PHQ9_cut, -PHQ9_severe) %>%
gtsummary::tbl_uvregression(method = lm, y= PHQ9_tot) %>%
add_global_p() %>%
bold_p()
## Warning in checkMatrixPackageVersion(): Package version inconsistency detected.
## TMB was built with Matrix version 1.3.2
## Current Matrix version is 1.2.18
## Please re-install 'TMB' from source using install.packages('TMB', type = 'source') or ask CRAN for a binary version of 'TMB' matching CRAN's 'Matrix' package
## add_global_p: Global p-values for variable(s) `add_global_p(include = c("Sex",
## "Age", "Race", "Ethnicity", "new_CSQ1", "new_CSQ2", "new_CSQ3", "new_CSQ4",
## "new_CSQ5", "new_CSQ6", "new_CSQ7", "new_CSQ8", "new_CSQ9", "new_CSQ10",
## "new_CSQ11", "new_CSQ12", "new_CSQ13", "new_CSQ_Healthrelatedstressors",
## "new_CSQ_nonpsychhealthrelatedstressors", "CSQ_tot", "PHQ9_moderate",
## "GAD7_tot", "GAD7_cut", "GAD7_severe", "GAD7_moderate"))` were calculated with
## `car::Anova(mod = x$model_obj, type = "III")`
| Characteristic | N | Beta | 95% CI1 | p-value |
|---|---|---|---|---|
| Sex | 681 | 0.2 | ||
| Female | — | — | ||
| Male | -0.68 | -1.7, 0.32 | ||
| Age | 680 | -0.01 | -0.05, 0.02 | 0.4 |
| Race | 681 | 0.8 | ||
| White | — | — | ||
| Black | -0.73 | -2.8, 1.4 | ||
| Other | 0.02 | -1.2, 1.3 | ||
| Ethnicity | 678 | 0.4 | ||
| Not Hispanic | — | — | ||
| Hispanic | 1.0 | -1.1, 3.1 | ||
| Other | 0.64 | -0.64, 1.9 | ||
| new_CSQ1 | 681 | 0.050 | ||
| 0 | — | — | ||
| 1 | 1.0 | 0.00, 2.1 | ||
| new_CSQ2 | 681 | 0.3 | ||
| 0 | — | — | ||
| 1 | 1.1 | -0.88, 3.0 | ||
| new_CSQ3 | 681 | <0.001 | ||
| 0 | — | — | ||
| 1 | 2.0 | 1.0, 3.0 | ||
| new_CSQ4 | 681 | 0.002 | ||
| 0 | — | — | ||
| 1 | 1.6 | 0.59, 2.6 | ||
| new_CSQ5 | 681 | 0.4 | ||
| 0 | — | — | ||
| 1 | 0.73 | -0.87, 2.3 | ||
| new_CSQ6 | 681 | 0.004 | ||
| 0 | — | — | ||
| 1 | 1.8 | 0.57, 3.0 | ||
| new_CSQ7 | 681 | 0.024 | ||
| 0 | — | — | ||
| 1 | 1.4 | 0.18, 2.6 | ||
| new_CSQ8 | 681 | 0.012 | ||
| 0 | — | — | ||
| 1 | 2.3 | 0.51, 4.2 | ||
| new_CSQ9 | 681 | 0.011 | ||
| 0 | — | — | ||
| 1 | 1.5 | 0.34, 2.6 | ||
| new_CSQ10 | 681 | 0.042 | ||
| 0 | — | — | ||
| 1 | 1.4 | 0.05, 2.7 | ||
| new_CSQ11 | 681 | 0.4 | ||
| 0 | — | — | ||
| 1 | 0.90 | -1.1, 2.9 | ||
| new_CSQ12 | 681 | 0.8 | ||
| 0 | — | — | ||
| 1 | -0.16 | -1.3, 1.0 | ||
| new_CSQ13 | 681 | <0.001 | ||
| 0 | — | — | ||
| 1 | 2.1 | 1.1, 3.0 | ||
| new_CSQ_Healthrelatedstressors | 681 | 0.7 | ||
| 0 | — | — | ||
| 1 | -0.32 | -2.0, 1.4 | ||
| new_CSQ_nonpsychhealthrelatedstressors | 681 | >0.9 | ||
| 0 | — | — | ||
| 1 | 0.06 | -2.7, 2.9 | ||
| CSQ_tot | 681 | 0.66 | 0.43, 0.89 | <0.001 |
| PHQ9_moderate | 673 | <0.001 | ||
| Mild depression | — | — | ||
| Moderate to severe depression | 12 | 12, 13 | ||
| GAD7_tot | 680 | 0.75 | 0.67, 0.82 | <0.001 |
| GAD7_cut | 672 | <0.001 | ||
| Minimal anxiety | — | — | ||
| Mild anxiety | 3.0 | 1.0, 5.1 | ||
| Moderate anxiety | 6.2 | 4.4, 8.1 | ||
| Severe anxiety | 11 | 9.6, 13 | ||
| GAD7_severe | 672 | <0.001 | ||
| Minimal to moderate anxiety | — | — | ||
| Severe anxiety | 6.9 | 6.0, 7.7 | ||
| GAD7_moderate | 672 | <0.001 | ||
| Mild anxiety | — | — | ||
| Moderate to severe anxiety | 8.0 | 6.8, 9.1 | ||
|
1
CI = Confidence Interval
|
||||
COMMENTARYL: Significant covariates by PHQ9_tot: new_CSQ3 new_CSQ4 new_CSQ6 new_CSQ7 new_CSQ8 new_CSQ9 new_CSQ10 new_CSQ13 CSQ_tot GAD_tot, GAD_cut, GAD_severe
PUCC_FIN %>% dplyr::select(-ZID, -Encounter_Date) %>%
gtsummary::tbl_summary(by=PHQ9_severe, statistic = list(all_continuous() ~ "{mean} ({sd})",
all_categorical() ~ "{n} / {N} ({p}%)"),
digits = all_continuous() ~ 2,
missing_text = "(Missing)") %>%
add_p()
## 119 observations missing `PHQ9_severe` have been removed. To include these observations, use `forcats::fct_explicit_na()` on `PHQ9_severe` column before passing to `tbl_summary()`.
| Characteristic | Minimal to moderate depression, N = 2561 | Severe depression, N = 4171 | p-value2 |
|---|---|---|---|
| Sex | 0.048 | ||
| Female | 138 / 256 (54%) | 257 / 417 (62%) | |
| Male | 118 / 256 (46%) | 160 / 417 (38%) | |
| Age | 36.88 (15.42) | 35.88 (14.66) | 0.6 |
| (Missing) | 1 | 0 | |
| Race | 0.4 | ||
| White | 191 / 256 (75%) | 310 / 417 (74%) | |
| Black | 19 / 256 (7.4%) | 21 / 417 (5.0%) | |
| Other | 46 / 256 (18%) | 86 / 417 (21%) | |
| Ethnicity | 0.3 | ||
| Not Hispanic | 199 / 254 (78%) | 305 / 416 (73%) | |
| Hispanic | 13 / 254 (5.1%) | 28 / 416 (6.7%) | |
| Other | 42 / 254 (17%) | 83 / 416 (20%) | |
| (Missing) | 2 | 1 | |
| new_CSQ1 | 0.3 | ||
| 0 | 174 / 256 (68%) | 267 / 417 (64%) | |
| 1 | 82 / 256 (32%) | 150 / 417 (36%) | |
| new_CSQ2 | 0.4 | ||
| 0 | 241 / 256 (94%) | 385 / 417 (92%) | |
| 1 | 15 / 256 (5.9%) | 32 / 417 (7.7%) | |
| new_CSQ3 | <0.001 | ||
| 0 | 190 / 256 (74%) | 254 / 417 (61%) | |
| 1 | 66 / 256 (26%) | 163 / 417 (39%) | |
| new_CSQ4 | 0.090 | ||
| 0 | 163 / 256 (64%) | 238 / 417 (57%) | |
| 1 | 93 / 256 (36%) | 179 / 417 (43%) | |
| new_CSQ5 | 0.2 | ||
| 0 | 234 / 256 (91%) | 368 / 417 (88%) | |
| 1 | 22 / 256 (8.6%) | 49 / 417 (12%) | |
| new_CSQ6 | 0.014 | ||
| 0 | 216 / 256 (84%) | 319 / 417 (76%) | |
| 1 | 40 / 256 (16%) | 98 / 417 (24%) | |
| new_CSQ7 | 0.14 | ||
| 0 | 211 / 256 (82%) | 324 / 417 (78%) | |
| 1 | 45 / 256 (18%) | 93 / 417 (22%) | |
| new_CSQ8 | 0.003 | ||
| 0 | 246 / 256 (96%) | 374 / 417 (90%) | |
| 1 | 10 / 256 (3.9%) | 43 / 417 (10%) | |
| new_CSQ9 | 0.13 | ||
| 0 | 199 / 256 (78%) | 302 / 417 (72%) | |
| 1 | 57 / 256 (22%) | 115 / 417 (28%) | |
| new_CSQ10 | 0.4 | ||
| 0 | 217 / 256 (85%) | 344 / 417 (82%) | |
| 1 | 39 / 256 (15%) | 73 / 417 (18%) | |
| new_CSQ11 | 0.5 | ||
| 0 | 241 / 256 (94%) | 387 / 417 (93%) | |
| 1 | 15 / 256 (5.9%) | 30 / 417 (7.2%) | |
| new_CSQ12 | 0.9 | ||
| 0 | 191 / 256 (75%) | 313 / 417 (75%) | |
| 1 | 65 / 256 (25%) | 104 / 417 (25%) | |
| new_CSQ13 | <0.001 | ||
| 0 | 172 / 256 (67%) | 226 / 417 (54%) | |
| 1 | 84 / 256 (33%) | 191 / 417 (46%) | |
| new_CSQ_Healthrelatedstressors | 0.7 | ||
| 0 | 230 / 256 (90%) | 379 / 417 (91%) | |
| 1 | 26 / 256 (10%) | 38 / 417 (9.1%) | |
| new_CSQ_nonpsychhealthrelatedstressors | 0.8 | ||
| 0 | 247 / 256 (96%) | 404 / 417 (97%) | |
| 1 | 9 / 256 (3.5%) | 13 / 417 (3.1%) | |
| CSQ_tot | 2.61 (1.96) | 3.29 (2.10) | <0.001 |
| PHQ9_tot | 10.21 (3.87) | 21.02 (3.28) | <0.001 |
| PHQ9_cut | <0.001 | ||
| Minimal depression | 39 / 256 (15%) | 0 / 417 (0%) | |
| Mild depression | 76 / 256 (30%) | 0 / 417 (0%) | |
| Moderate depression | 141 / 256 (55%) | 0 / 417 (0%) | |
| Moderately severe depression | 0 / 256 (0%) | 196 / 417 (47%) | |
| Severe depression | 0 / 256 (0%) | 221 / 417 (53%) | |
| PHQ9_moderate | <0.001 | ||
| Mild depression | 115 / 256 (45%) | 0 / 417 (0%) | |
| Moderate to severe depression | 141 / 256 (55%) | 417 / 417 (100%) | |
| GAD7_tot | 12.42 (5.47) | 17.67 (3.82) | <0.001 |
| (Missing) | 1 | 0 | |
| GAD7_cut | <0.001 | ||
| Minimal anxiety | 33 / 254 (13%) | 4 / 415 (1.0%) | |
| Mild anxiety | 58 / 254 (23%) | 14 / 415 (3.4%) | |
| Moderate anxiety | 76 / 254 (30%) | 73 / 415 (18%) | |
| Severe anxiety | 87 / 254 (34%) | 324 / 415 (78%) | |
| (Missing) | 2 | 2 | |
| GAD7_severe | <0.001 | ||
| Minimal to moderate anxiety | 167 / 254 (66%) | 91 / 415 (22%) | |
| Severe anxiety | 87 / 254 (34%) | 324 / 415 (78%) | |
| (Missing) | 2 | 2 | |
| GAD7_moderate | <0.001 | ||
| Mild anxiety | 91 / 254 (36%) | 18 / 415 (4.3%) | |
| Moderate to severe anxiety | 163 / 254 (64%) | 397 / 415 (96%) | |
| (Missing) | 2 | 2 | |
|
1
n / N (%); Mean (SD)
2
Pearson's Chi-squared test; Wilcoxon rank sum test
|
|||
Significant covariates according to PHQ9_severe (dichotomous): Sex new_CSQ3 new_CSQ6 new_CSQ8 new_CSQ13 CSQ_tot GAD7 variables
#Group comparison by PHQ9_cut (severe or not severe depression)
PUCC_FIN %>% dplyr::select(-ZID, -Encounter_Date) %>%
gtsummary::tbl_summary(by=PHQ9_moderate, statistic = list(all_continuous() ~ "{mean} ({sd})",
all_categorical() ~ "{n} / {N} ({p}%)"),
digits = all_continuous() ~ 2,
missing_text = "(Missing)") %>%
add_p()
## 119 observations missing `PHQ9_moderate` have been removed. To include these observations, use `forcats::fct_explicit_na()` on `PHQ9_moderate` column before passing to `tbl_summary()`.
| Characteristic | Mild depression, N = 1151 | Moderate to severe depression, N = 5581 | p-value2 |
|---|---|---|---|
| Sex | 0.6 | ||
| Female | 65 / 115 (57%) | 330 / 558 (59%) | |
| Male | 50 / 115 (43%) | 228 / 558 (41%) | |
| Age | 36.89 (15.98) | 36.13 (14.75) | >0.9 |
| (Missing) | 1 | 0 | |
| Race | 0.3 | ||
| White | 90 / 115 (78%) | 411 / 558 (74%) | |
| Black | 8 / 115 (7.0%) | 32 / 558 (5.7%) | |
| Other | 17 / 115 (15%) | 115 / 558 (21%) | |
| Ethnicity | 0.3 | ||
| Not Hispanic | 92 / 114 (81%) | 412 / 556 (74%) | |
| Hispanic | 6 / 114 (5.3%) | 35 / 556 (6.3%) | |
| Other | 16 / 114 (14%) | 109 / 556 (20%) | |
| (Missing) | 1 | 2 | |
| new_CSQ1 | 0.063 | ||
| 0 | 84 / 115 (73%) | 357 / 558 (64%) | |
| 1 | 31 / 115 (27%) | 201 / 558 (36%) | |
| new_CSQ2 | 0.7 | ||
| 0 | 106 / 115 (92%) | 520 / 558 (93%) | |
| 1 | 9 / 115 (7.8%) | 38 / 558 (6.8%) | |
| new_CSQ3 | 0.029 | ||
| 0 | 86 / 115 (75%) | 358 / 558 (64%) | |
| 1 | 29 / 115 (25%) | 200 / 558 (36%) | |
| new_CSQ4 | 0.005 | ||
| 0 | 82 / 115 (71%) | 319 / 558 (57%) | |
| 1 | 33 / 115 (29%) | 239 / 558 (43%) | |
| new_CSQ5 | >0.9 | ||
| 0 | 103 / 115 (90%) | 499 / 558 (89%) | |
| 1 | 12 / 115 (10%) | 59 / 558 (11%) | |
| new_CSQ6 | 0.015 | ||
| 0 | 101 / 115 (88%) | 434 / 558 (78%) | |
| 1 | 14 / 115 (12%) | 124 / 558 (22%) | |
| new_CSQ7 | 0.001 | ||
| 0 | 104 / 115 (90%) | 431 / 558 (77%) | |
| 1 | 11 / 115 (9.6%) | 127 / 558 (23%) | |
| new_CSQ8 | 0.12 | ||
| 0 | 110 / 115 (96%) | 510 / 558 (91%) | |
| 1 | 5 / 115 (4.3%) | 48 / 558 (8.6%) | |
| new_CSQ9 | 0.083 | ||
| 0 | 93 / 115 (81%) | 408 / 558 (73%) | |
| 1 | 22 / 115 (19%) | 150 / 558 (27%) | |
| new_CSQ10 | 0.3 | ||
| 0 | 100 / 115 (87%) | 461 / 558 (83%) | |
| 1 | 15 / 115 (13%) | 97 / 558 (17%) | |
| new_CSQ11 | 0.6 | ||
| 0 | 106 / 115 (92%) | 522 / 558 (94%) | |
| 1 | 9 / 115 (7.8%) | 36 / 558 (6.5%) | |
| new_CSQ12 | 0.8 | ||
| 0 | 87 / 115 (76%) | 417 / 558 (75%) | |
| 1 | 28 / 115 (24%) | 141 / 558 (25%) | |
| new_CSQ13 | 0.012 | ||
| 0 | 80 / 115 (70%) | 318 / 558 (57%) | |
| 1 | 35 / 115 (30%) | 240 / 558 (43%) | |
| new_CSQ_Healthrelatedstressors | 0.7 | ||
| 0 | 103 / 115 (90%) | 506 / 558 (91%) | |
| 1 | 12 / 115 (10%) | 52 / 558 (9.3%) | |
| new_CSQ_nonpsychhealthrelatedstressors | 0.6 | ||
| 0 | 110 / 115 (96%) | 541 / 558 (97%) | |
| 1 | 5 / 115 (4.3%) | 17 / 558 (3.0%) | |
| CSQ_tot | 2.35 (2.06) | 3.17 (2.05) | <0.001 |
| PHQ9_tot | 6.59 (2.68) | 19.04 (4.50) | <0.001 |
| PHQ9_cut | <0.001 | ||
| Minimal depression | 39 / 115 (34%) | 0 / 558 (0%) | |
| Mild depression | 76 / 115 (66%) | 0 / 558 (0%) | |
| Moderate depression | 0 / 115 (0%) | 141 / 558 (25%) | |
| Moderately severe depression | 0 / 115 (0%) | 196 / 558 (35%) | |
| Severe depression | 0 / 115 (0%) | 221 / 558 (40%) | |
| PHQ9_severe | <0.001 | ||
| Minimal to moderate depression | 115 / 115 (100%) | 141 / 558 (25%) | |
| Severe depression | 0 / 115 (0%) | 417 / 558 (75%) | |
| GAD7_tot | 10.09 (5.18) | 16.82 (4.39) | <0.001 |
| (Missing) | 1 | 0 | |
| GAD7_cut | <0.001 | ||
| Minimal anxiety | 24 / 113 (21%) | 13 / 556 (2.3%) | |
| Mild anxiety | 34 / 113 (30%) | 38 / 556 (6.8%) | |
| Moderate anxiety | 36 / 113 (32%) | 113 / 556 (20%) | |
| Severe anxiety | 19 / 113 (17%) | 392 / 556 (71%) | |
| (Missing) | 2 | 2 | |
| GAD7_severe | <0.001 | ||
| Minimal to moderate anxiety | 94 / 113 (83%) | 164 / 556 (29%) | |
| Severe anxiety | 19 / 113 (17%) | 392 / 556 (71%) | |
| (Missing) | 2 | 2 | |
| GAD7_moderate | <0.001 | ||
| Mild anxiety | 58 / 113 (51%) | 51 / 556 (9.2%) | |
| Moderate to severe anxiety | 55 / 113 (49%) | 505 / 556 (91%) | |
| (Missing) | 2 | 2 | |
|
1
n / N (%); Mean (SD)
2
Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's exact test
|
|||
COMMENTARY: Positive screens for variables: CSQ 3, 4, 6, 7, 13, CSQ_tot, GAD7 variables
mod_CSQ_tot<-lm(PHQ9_tot~Sex+Age+Race+GAD7_tot+CSQ_tot, data=PUCC_FIN)
summary(mod_CSQ_tot)
##
## Call:
## lm(formula = PHQ9_tot ~ Sex + Age + Race + GAD7_tot + CSQ_tot,
## data = PUCC_FIN)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.5069 -3.3519 0.3315 3.5237 20.6467
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.77639 0.84410 5.659 2.26e-08 ***
## SexMale -0.62135 0.40071 -1.551 0.1215
## Age 0.01114 0.01330 0.838 0.4024
## RaceBlack -0.64300 0.83479 -0.770 0.4414
## RaceOther -0.34213 0.49927 -0.685 0.4934
## GAD7_tot 0.72781 0.03776 19.277 < 2e-16 ***
## CSQ_tot 0.21082 0.09798 2.152 0.0318 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.13 on 672 degrees of freedom
## (113 observations deleted due to missingness)
## Multiple R-squared: 0.3862, Adjusted R-squared: 0.3808
## F-statistic: 70.48 on 6 and 672 DF, p-value: < 2.2e-16
#Cohen's d effect size function
reg_cohend <- function (glm_output) {
beta <- summary(glm_output)$coefficients[,1]
SD <- sqrt(dim(glm_output$model)[1])*summary(glm_output)$coefficients[,2]
cohend <- round(beta/SD,3)
return(cohend)
}
reg_cohend(mod_CSQ_tot)
## (Intercept) SexMale Age RaceBlack RaceOther GAD7_tot
## 0.217 -0.060 0.032 -0.030 -0.026 0.740
## CSQ_tot
## 0.083
COMMENTARY: Here we see CSQ_tot (sum tally of all CSQ variables) is significantly associated with depressive severity when measured continuously (PHQ9_tot), but small effect size compared to GAD7.
mod_CSQ_tot<-lm(CSQ_tot~Sex+Age+Race+PHQ9_cut+GAD7_tot, data=PUCC_FIN)
summary(mod_CSQ_tot)
##
## Call:
## lm(formula = CSQ_tot ~ Sex + Age + Race + PHQ9_cut + GAD7_tot,
## data = PUCC_FIN)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8157 -1.4678 -0.2378 1.2620 9.9556
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.758762 0.431803 4.073 5.2e-05 ***
## SexMale 0.078603 0.159965 0.491 0.623323
## Age -0.006990 0.005306 -1.318 0.188117
## RaceBlack -0.106042 0.334056 -0.317 0.751011
## RaceOther 0.173053 0.199343 0.868 0.385645
## PHQ9_cutMild depression 0.131029 0.404226 0.324 0.745929
## PHQ9_cutModerate depression 0.245146 0.380698 0.644 0.519838
## PHQ9_cutModerately severe depression 0.453570 0.381361 1.189 0.234731
## PHQ9_cutSevere depression 0.484630 0.395012 1.227 0.220307
## GAD7_tot 0.070693 0.018552 3.811 0.000152 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.025 on 661 degrees of freedom
## (121 observations deleted due to missingness)
## Multiple R-squared: 0.05781, Adjusted R-squared: 0.04498
## F-statistic: 4.506 on 9 and 661 DF, p-value: 9.105e-06
reg_cohend(mod_CSQ_tot)
## (Intercept) SexMale
## 0.157 0.019
## Age RaceBlack
## -0.051 -0.012
## RaceOther PHQ9_cutMild depression
## 0.034 0.013
## PHQ9_cutModerate depression PHQ9_cutModerately severe depression
## 0.025 0.046
## PHQ9_cutSevere depression GAD7_tot
## 0.047 0.147
COMMENTARY: Here we are demonstrating that CSQ_tot does not distinguish between 4 levels of depressive severity, when PHQ9 is an categorical (ordinal) variable, when adjusted for demographics and anxiety. This suggests that the sum burden of CSQ stressors (CSQ_tot) is not sensitive enough to distinguish depressive severity in a clinically meaningful way. We have get more refined and ask about specific stressors.
mod_CSQ_tot<-glm(PHQ9_severe~Sex+Age+Race+GAD7_tot+CSQ_tot, family=binomial, data=PUCC_FIN)
summary(mod_CSQ_tot)
##
## Call:
## glm(formula = PHQ9_severe ~ Sex + Age + Race + GAD7_tot + CSQ_tot,
## family = binomial, data = PUCC_FIN)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.1370 -0.8484 0.5425 0.7739 2.5866
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.119717 0.436004 -7.155 8.35e-13 ***
## SexMale -0.400732 0.187111 -2.142 0.0322 *
## Age 0.002851 0.006155 0.463 0.6433
## RaceBlack -0.503480 0.385531 -1.306 0.1916
## RaceOther 0.028264 0.238639 0.118 0.9057
## GAD7_tot 0.226880 0.021038 10.784 < 2e-16 ***
## CSQ_tot 0.069969 0.047093 1.486 0.1373
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 890.21 on 670 degrees of freedom
## Residual deviance: 709.81 on 664 degrees of freedom
## (121 observations deleted due to missingness)
## AIC: 723.81
##
## Number of Fisher Scoring iterations: 4
reg_cohend(mod_CSQ_tot)
## (Intercept) SexMale Age RaceBlack RaceOther GAD7_tot
## -0.276 -0.083 0.018 -0.050 0.005 0.416
## CSQ_tot
## 0.057
Just to be sure, let’s see if CSQ_tot can distinguish between severe vs. not severe depression (dichotomous variable). We find that CSQ_tot is still not significantly associated with depression (severe vs. not severe) when adjusted for sex, age, race and anxiety. In other words, there’s no added clinical benefit to summing total CSQ items for distinguishing severerly depressed patients at the PUCC, that is added value above and beyond asking for GAD7.
mod1_PHQ9_severe<-glm(PHQ9_severe ~
Sex+
Age+
Race+
GAD7_severe+
new_CSQ3+
new_CSQ6+
new_CSQ8+
new_CSQ13,
family=binomial, data=PUCC_FIN)
reg_cohend(mod1_PHQ9_severe)
## (Intercept) SexMale Age
## -0.111 -0.099 0.021
## RaceBlack RaceOther GAD7_severeSevere anxiety
## -0.042 0.016 0.397
## new_CSQ31 new_CSQ61 new_CSQ81
## 0.062 0.048 0.059
## new_CSQ131
## 0.081
summary(mod1_PHQ9_severe)
##
## Call:
## glm(formula = PHQ9_severe ~ Sex + Age + Race + GAD7_severe +
## new_CSQ3 + new_CSQ6 + new_CSQ8 + new_CSQ13, family = binomial,
## data = PUCC_FIN)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2470 -0.8932 0.5963 0.7522 1.7335
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.846506 0.295338 -2.866 0.00415 **
## SexMale -0.471830 0.184642 -2.555 0.01061 *
## Age 0.003221 0.006026 0.534 0.59301
## RaceBlack -0.423229 0.385401 -1.098 0.27214
## RaceOther 0.094817 0.233762 0.406 0.68503
## GAD7_severeSevere anxiety 1.878136 0.183232 10.250 < 2e-16 ***
## new_CSQ31 0.321904 0.200810 1.603 0.10893
## new_CSQ61 0.288340 0.234838 1.228 0.21951
## new_CSQ81 0.599698 0.395113 1.518 0.12907
## new_CSQ131 0.397496 0.189516 2.097 0.03596 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 886.36 on 667 degrees of freedom
## Residual deviance: 735.87 on 658 degrees of freedom
## (124 observations deleted due to missingness)
## AIC: 755.87
##
## Number of Fisher Scoring iterations: 4
#Table
mod1_PHQ9_severe %>%
tbl_regression(
exponentiate = TRUE,
pvalue_fun = ~style_pvalue(.x, digits = 2),
) %>%
add_global_p() %>%
bold_p(t = 0.05) %>%
bold_labels() %>%
italicize_levels()
## add_global_p: Global p-values for variable(s) `add_global_p(include = c("Sex",
## "Age", "Race", "GAD7_severe", "new_CSQ3", "new_CSQ6", "new_CSQ8", "new_CSQ13"))`
## were calculated with
## `car::Anova(x$model_obj, type = "III")`
| Characteristic | OR1 | 95% CI1 | p-value |
|---|---|---|---|
| Sex | 0.010 | ||
| Female | — | — | |
| Male | 0.62 | 0.43, 0.89 | |
| Age | 1.00 | 0.99, 1.02 | 0.59 |
| Race | 0.48 | ||
| White | — | — | |
| Black | 0.65 | 0.31, 1.40 | |
| Other | 1.10 | 0.70, 1.75 | |
| GAD7_severe | <0.001 | ||
| Minimal to moderate anxiety | — | — | |
| Severe anxiety | 6.54 | 4.59, 9.41 | |
| new_CSQ3 | 0.11 | ||
| 0 | — | — | |
| 1 | 1.38 | 0.93, 2.05 | |
| new_CSQ6 | 0.22 | ||
| 0 | — | — | |
| 1 | 1.33 | 0.85, 2.13 | |
| new_CSQ8 | 0.12 | ||
| 0 | — | — | |
| 1 | 1.82 | 0.87, 4.14 | |
| new_CSQ13 | 0.035 | ||
| 0 | — | — | |
| 1 | 1.49 | 1.03, 2.16 | |
|
1
OR = Odds Ratio, CI = Confidence Interval
|
|||
COMMENTARY: this table is a the same as the txt version above
#Removal of CSQ6, then CSQ8
mod2_PHQ9_severe<-glm(PHQ9_severe ~
Sex+
Age+
Race+
GAD7_severe+
new_CSQ3+
new_CSQ13,
family=binomial, data=PUCC_FIN)
summary(mod2_PHQ9_severe)
##
## Call:
## glm(formula = PHQ9_severe ~ Sex + Age + Race + GAD7_severe +
## new_CSQ3 + new_CSQ13, family = binomial, data = PUCC_FIN)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.1236 -0.9029 0.5954 0.7386 1.7157
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.848895 0.294967 -2.878 0.0040 **
## SexMale -0.447705 0.183148 -2.445 0.0145 *
## Age 0.004076 0.005976 0.682 0.4951
## RaceBlack -0.379683 0.379580 -1.000 0.3172
## RaceOther 0.094091 0.232575 0.405 0.6858
## GAD7_severeSevere anxiety 1.908618 0.182455 10.461 <2e-16 ***
## new_CSQ31 0.384722 0.197769 1.945 0.0517 .
## new_CSQ131 0.442485 0.187827 2.356 0.0185 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 886.36 on 667 degrees of freedom
## Residual deviance: 740.04 on 660 degrees of freedom
## (124 observations deleted due to missingness)
## AIC: 756.04
##
## Number of Fisher Scoring iterations: 4
reg_cohend(mod2_PHQ9_severe)
## (Intercept) SexMale Age
## -0.111 -0.095 0.026
## RaceBlack RaceOther GAD7_severeSevere anxiety
## -0.039 0.016 0.405
## new_CSQ31 new_CSQ131
## 0.075 0.091
#Table
mod2_PHQ9_severe %>%
tbl_regression(
exponentiate = TRUE,
pvalue_fun = ~style_pvalue(.x, digits = 2),
) %>%
add_global_p() %>%
bold_p(t = 0.05) %>%
bold_labels() %>%
italicize_levels()
## add_global_p: Global p-values for variable(s) `add_global_p(include = c("Sex",
## "Age", "Race", "GAD7_severe", "new_CSQ3", "new_CSQ13"))` were calculated with
## `car::Anova(x$model_obj, type = "III")`
| Characteristic | OR1 | 95% CI1 | p-value |
|---|---|---|---|
| Sex | 0.014 | ||
| Female | — | — | |
| Male | 0.64 | 0.45, 0.91 | |
| Age | 1.00 | 0.99, 1.02 | 0.49 |
| Race | 0.53 | ||
| White | — | — | |
| Black | 0.68 | 0.33, 1.45 | |
| Other | 1.10 | 0.70, 1.74 | |
| GAD7_severe | <0.001 | ||
| Minimal to moderate anxiety | — | — | |
| Severe anxiety | 6.74 | 4.74, 9.69 | |
| new_CSQ3 | 0.051 | ||
| 0 | — | — | |
| 1 | 1.47 | 1.00, 2.17 | |
| new_CSQ13 | 0.018 | ||
| 0 | — | — | |
| 1 | 1.56 | 1.08, 2.25 | |
|
1
OR = Odds Ratio, CI = Confidence Interval
|
|||
#Removal of CSQ3
mod3_PHQ9_severe<-glm(PHQ9_severe ~
Sex+
Age+
Race+
GAD7_severe+
new_CSQ13,
family=binomial, data=PUCC_FIN)
summary(mod3_PHQ9_severe)
##
## Call:
## glm(formula = PHQ9_severe ~ Sex + Age + Race + GAD7_severe +
## new_CSQ13, family = binomial, data = PUCC_FIN)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.0326 -0.9306 0.5631 0.7065 1.6706
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.737627 0.287756 -2.563 0.01037 *
## SexMale -0.440615 0.182595 -2.413 0.01582 *
## Age 0.003210 0.005939 0.540 0.58886
## RaceBlack -0.340629 0.372915 -0.913 0.36102
## RaceOther 0.106274 0.231749 0.459 0.64654
## GAD7_severeSevere anxiety 1.934949 0.181724 10.648 < 2e-16 ***
## new_CSQ131 0.498170 0.185276 2.689 0.00717 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 886.36 on 667 degrees of freedom
## Residual deviance: 743.86 on 661 degrees of freedom
## (124 observations deleted due to missingness)
## AIC: 757.86
##
## Number of Fisher Scoring iterations: 4
reg_cohend(mod3_PHQ9_severe)
## (Intercept) SexMale Age
## -0.099 -0.093 0.021
## RaceBlack RaceOther GAD7_severeSevere anxiety
## -0.035 0.018 0.412
## new_CSQ131
## 0.104
#Table
mod3_PHQ9_severe %>%
tbl_regression(
exponentiate = TRUE,
pvalue_fun = ~style_pvalue(.x, digits = 2),
) %>%
add_global_p() %>%
bold_p(t = 0.05) %>%
bold_labels() %>%
italicize_levels()
## add_global_p: Global p-values for variable(s) `add_global_p(include = c("Sex",
## "Age", "Race", "GAD7_severe", "new_CSQ13"))` were calculated with
## `car::Anova(x$model_obj, type = "III")`
| Characteristic | OR1 | 95% CI1 | p-value |
|---|---|---|---|
| Sex | 0.016 | ||
| Female | — | — | |
| Male | 0.64 | 0.45, 0.92 | |
| Age | 1.00 | 0.99, 1.02 | 0.59 |
| Race | 0.56 | ||
| White | — | — | |
| Black | 0.71 | 0.34, 1.49 | |
| Other | 1.11 | 0.71, 1.76 | |
| GAD7_severe | <0.001 | ||
| Minimal to moderate anxiety | — | — | |
| Severe anxiety | 6.92 | 4.87, 9.94 | |
| new_CSQ13 | 0.007 | ||
| 0 | — | — | |
| 1 | 1.65 | 1.15, 2.37 | |
|
1
OR = Odds Ratio, CI = Confidence Interval
|
|||
COMMENTARY: This is likely the final model: severe depression PUCC presentation is independently associated with increased reported loneliness. This effect persisted after adjusting for sex, age, race, anxiety severity (GAD7, dichotomously measured by severe vs. less severe), and interactions. Of note, financial stressors (CSQ3) trended towards significance in the prior model.
mod4_PHQ9_moderate<-glm(PHQ9_moderate~
Sex+
Age+
Race+
GAD7_severe+
new_CSQ3+
new_CSQ4+
new_CSQ6+
new_CSQ7+
new_CSQ13,
family=binomial, data=PUCC_FIN)
summary(mod4_PHQ9_moderate)
##
## Call:
## glm(formula = PHQ9_moderate ~ Sex + Age + Race + GAD7_severe +
## new_CSQ3 + new_CSQ4 + new_CSQ6 + new_CSQ7 + new_CSQ13, family = binomial,
## data = PUCC_FIN)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.0404 0.2104 0.3118 0.4575 1.2565
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.058007 0.358836 -0.162 0.8716
## SexMale -0.238601 0.235730 -1.012 0.3115
## Age 0.005902 0.007346 0.803 0.4217
## RaceBlack -0.031823 0.485506 -0.066 0.9477
## RaceOther 0.415600 0.317185 1.310 0.1901
## GAD7_severeSevere anxiety 2.383427 0.272594 8.744 <2e-16 ***
## new_CSQ31 -0.023231 0.270241 -0.086 0.9315
## new_CSQ41 0.419891 0.251836 1.667 0.0955 .
## new_CSQ61 0.475191 0.336535 1.412 0.1579
## new_CSQ71 0.702721 0.368121 1.909 0.0563 .
## new_CSQ131 0.393446 0.249004 1.580 0.1141
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 604.09 on 667 degrees of freedom
## Residual deviance: 474.55 on 657 degrees of freedom
## (124 observations deleted due to missingness)
## AIC: 496.55
##
## Number of Fisher Scoring iterations: 5
#Removing variables starting with least significant: CSQ6 --> CSQ3 --> CSQ4 --> CSQ13
mod4_PHQ9_moderate<-glm(PHQ9_moderate~
Sex+
Age+
Race+
GAD7_severe+
new_CSQ7+
new_CSQ13,
family=binomial, data=PUCC_FIN)
summary(mod4_PHQ9_moderate)
##
## Call:
## glm(formula = PHQ9_moderate ~ Sex + Age + Race + GAD7_severe +
## new_CSQ7 + new_CSQ13, family = binomial, data = PUCC_FIN)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.8552 0.2279 0.3182 0.4084 1.1679
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.1107832 0.3373149 0.328 0.7426
## SexMale -0.2087586 0.2334934 -0.894 0.3713
## Age 0.0060160 0.0071899 0.837 0.4027
## RaceBlack 0.0006439 0.4820406 0.001 0.9989
## RaceOther 0.4344841 0.3149547 1.380 0.1677
## GAD7_severeSevere anxiety 2.4155156 0.2712183 8.906 <2e-16 ***
## new_CSQ71 0.7440086 0.3578971 2.079 0.0376 *
## new_CSQ131 0.4185383 0.2443613 1.713 0.0868 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 604.09 on 667 degrees of freedom
## Residual deviance: 479.48 on 660 degrees of freedom
## (124 observations deleted due to missingness)
## AIC: 495.48
##
## Number of Fisher Scoring iterations: 5
reg_cohend(mod4_PHQ9_moderate)
## (Intercept) SexMale Age
## 0.013 -0.035 0.032
## RaceBlack RaceOther GAD7_severeSevere anxiety
## 0.000 0.053 0.345
## new_CSQ71 new_CSQ131
## 0.080 0.066
#Table
mod4_PHQ9_moderate %>%
tbl_regression(
exponentiate = TRUE,
pvalue_fun = ~style_pvalue(.x, digits = 2),
) %>%
add_global_p() %>%
bold_p(t = 0.05) %>%
bold_labels() %>%
italicize_levels()
## add_global_p: Global p-values for variable(s) `add_global_p(include = c("Sex",
## "Age", "Race", "GAD7_severe", "new_CSQ7", "new_CSQ13"))` were calculated with
## `car::Anova(x$model_obj, type = "III")`
| Characteristic | OR1 | 95% CI1 | p-value |
|---|---|---|---|
| Sex | 0.37 | ||
| Female | — | — | |
| Male | 0.81 | 0.51, 1.28 | |
| Age | 1.01 | 0.99, 1.02 | 0.40 |
| Race | 0.36 | ||
| White | — | — | |
| Black | 1.00 | 0.40, 2.74 | |
| Other | 1.54 | 0.85, 2.93 | |
| GAD7_severe | <0.001 | ||
| Minimal to moderate anxiety | — | — | |
| Severe anxiety | 11.2 | 6.72, 19.6 | |
| new_CSQ7 | 0.028 | ||
| 0 | — | — | |
| 1 | 2.10 | 1.08, 4.44 | |
| new_CSQ13 | 0.083 | ||
| 0 | — | — | |
| 1 | 1.52 | 0.95, 2.47 | |
|
1
OR = Odds Ratio, CI = Confidence Interval
|
|||
COMMENTARY: In this model, we show that lowering the threshold of depressive severity from severe to moderate (still dichotomously measured) diminishes the significance of CSQ13 (loneliness) to a trend. It would be interesting to see if the association between loneliness and depressive severity is dose-dependent (quantitative) or if severely depressed patients tend to form a more lonely group (qualitative), but out of scope for this poster. Of note, in this model job instability (CSQ7) is more strongly associated to moderate to severe depression, compared to loneliness.