From Github

The dataset I am going to look at includes all people killed by a police officer in 2016. I gathered this dataset a while back and put it on my github. You can see the original from the Gaurdian Newspaper here. I uploaded the file to my github and created a raw link for it. I’ll now read it into my code

df <- read.csv("https://raw.githubusercontent.com/nurfnick/Data_Sets_For_Stats/master/CuratedDataSets/the-counted-2016.csv",encoding = "UTF-8")
head(df)
##     uid             name age gender raceethnicity   month day year
## 1 20161    Joshua Sisson  30   Male         White January   1 2016
## 2 20162 Germonta Wallace  30   Male         Black January   3 2016
## 3 20163     Sean O'Brien  37   Male         White January   2 2016
## 4 20164    Rodney Turner  22   Male         Black January   4 2016
## 5 20165     Eric Senegal  27   Male         Black January   4 2016
## 6 20166      David Zollo  54   Male         White January   5 2016
##       streetaddress            city state classification
## 1      4200 6th Ave       San Diego    CA        Gunshot
## 2    2600 Watson Dr       Charlotte    NC        Gunshot
## 3 100 Washington St      Livingston    MT        Gunshot
## 4   3600 NW 42nd St   Oklahoma City    OK        Gunshot
## 5   Gene Stanley Rd          Ragley    LA        Gunshot
## 6  151 S Bishop Ave Clifton Heights    PA        Gunshot
##                      lawenforcementagency   armed
## 1             San Diego Police Department   Knife
## 2 Charlotte-Mecklenburg Police Department Firearm
## 3            Livingston Police Department   Knife
## 4         Oklahoma City Police Department Firearm
## 5      Beauregard Parish Sheriff's Office Unknown
## 6           Upper Darby Police Department   Knife

I give a small sample of the data using the head command. Printing all of the data should be avoided!

head(df)
##     uid             name age gender raceethnicity   month day year
## 1 20161    Joshua Sisson  30   Male         White January   1 2016
## 2 20162 Germonta Wallace  30   Male         Black January   3 2016
## 3 20163     Sean O'Brien  37   Male         White January   2 2016
## 4 20164    Rodney Turner  22   Male         Black January   4 2016
## 5 20165     Eric Senegal  27   Male         Black January   4 2016
## 6 20166      David Zollo  54   Male         White January   5 2016
##       streetaddress            city state classification
## 1      4200 6th Ave       San Diego    CA        Gunshot
## 2    2600 Watson Dr       Charlotte    NC        Gunshot
## 3 100 Washington St      Livingston    MT        Gunshot
## 4   3600 NW 42nd St   Oklahoma City    OK        Gunshot
## 5   Gene Stanley Rd          Ragley    LA        Gunshot
## 6  151 S Bishop Ave Clifton Heights    PA        Gunshot
##                      lawenforcementagency   armed
## 1             San Diego Police Department   Knife
## 2 Charlotte-Mecklenburg Police Department Firearm
## 3            Livingston Police Department   Knife
## 4         Oklahoma City Police Department Firearm
## 5      Beauregard Parish Sheriff's Office Unknown
## 6           Upper Darby Police Department   Knife

From Upload to RStudio

If you were not going to load the data from a link (github only supports small data files). You can load directly into RStudio. Use Upload and select our file, I did this with a file called disney.xlsx. Now that it is in, I’ll load it into R.

library(readxl)
df2 = read_excel("disney.xlsx")
## New names:
## * `` -> ...1
head(df2)
## # A tibble: 6 × 32
##   ...1  title  `Production comp… `Release date`  `Running time` Country Language
##   <chr> <chr>  <chr>             <chr>           <chr>          <chr>   <chr>   
## 1 0     Acade… Walt Disney Prod… ['May 19, 1937… 41 minutes (7… United… English 
## 2 1     Snow … Walt Disney Prod… ['December 21,… 83 minutes     United… English 
## 3 2     Pinoc… Walt Disney Prod… ['February 7, … 88 minutes     United… English 
## 4 3     Fanta… Walt Disney Prod… ['November 13,… 126 minutes    United… English 
## 5 4     The R… Walt Disney Prod… ['June 20, 194… 74 minutes     United… English 
## 6 5     Dumbo  Walt Disney Prod… ['October 23, … 64 minutes     United… English 
## # … with 25 more variables: Running time (int) <dbl>, Budget (float) <dbl>,
## #   Box office (float) <dbl>, Release date (datetime) <dttm>, imdb <chr>,
## #   metascore <chr>, rotten_tomatoes <dbl>, Directed by <chr>,
## #   Produced by <chr>, Written by <chr>, Based on <chr>, Starring <chr>,
## #   Music by <chr>, Distributed by <chr>, Budget <chr>, Box office <chr>,
## #   Story by <chr>, Narrated by <chr>, Cinematography <chr>, Edited by <chr>,
## #   Screenplay by <chr>, Production companies <chr>, Adaptation by <chr>, …

Built Into R

There are some datasets included in packages for R. You can find a list here I’ll load something from the list

Titanic
## , , Age = Child, Survived = No
## 
##       Sex
## Class  Male Female
##   1st     0      0
##   2nd     0      0
##   3rd    35     17
##   Crew    0      0
## 
## , , Age = Adult, Survived = No
## 
##       Sex
## Class  Male Female
##   1st   118      4
##   2nd   154     13
##   3rd   387     89
##   Crew  670      3
## 
## , , Age = Child, Survived = Yes
## 
##       Sex
## Class  Male Female
##   1st     5      1
##   2nd    11     13
##   3rd    13     14
##   Crew    0      0
## 
## , , Age = Adult, Survived = Yes
## 
##       Sex
## Class  Male Female
##   1st    57    140
##   2nd    14     80
##   3rd    75     76
##   Crew  192     20

This will NOT work for the project…iris or cars might…

A Smattering of R Packages

I found mention of a baseball stats package so I’ve added to my library by installing. You can find more info here

library(Lahman)
#help(Lahman)
head(Batting)
##    playerID yearID stint teamID lgID  G  AB  R  H X2B X3B HR RBI SB CS BB SO
## 1 abercda01   1871     1    TRO   NA  1   4  0  0   0   0  0   0  0  0  0  0
## 2  addybo01   1871     1    RC1   NA 25 118 30 32   6   0  0  13  8  1  4  0
## 3 allisar01   1871     1    CL1   NA 29 137 28 40   4   5  0  19  3  1  2  5
## 4 allisdo01   1871     1    WS3   NA 27 133 28 44  10   2  2  27  1  1  0  2
## 5 ansonca01   1871     1    RC1   NA 25 120 29 39  11   3  0  16  6  2  2  1
## 6 armstbo01   1871     1    FW1   NA 12  49  9 11   2   1  0   5  0  1  0  1
##   IBB HBP SH SF GIDP
## 1  NA  NA NA NA    0
## 2  NA  NA NA NA    0
## 3  NA  NA NA NA    1
## 4  NA  NA NA NA    0
## 5  NA  NA NA NA    0
## 6  NA  NA NA NA    0
library(babynames)
head(babynames)
## # A tibble: 6 × 5
##    year sex   name          n   prop
##   <dbl> <chr> <chr>     <int>  <dbl>
## 1  1880 F     Mary       7065 0.0724
## 2  1880 F     Anna       2604 0.0267
## 3  1880 F     Emma       2003 0.0205
## 4  1880 F     Elizabeth  1939 0.0199
## 5  1880 F     Minnie     1746 0.0179
## 6  1880 F     Margaret   1578 0.0162
library(nycflights13)
head(flights)
## # A tibble: 6 × 19
##    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
## 1  2013     1     1      517            515         2      830            819
## 2  2013     1     1      533            529         4      850            830
## 3  2013     1     1      542            540         2      923            850
## 4  2013     1     1      544            545        -1     1004           1022
## 5  2013     1     1      554            600        -6      812            837
## 6  2013     1     1      554            558        -4      740            728
## # … with 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>
library(fec16)
head(candidates)
## # A tibble: 6 × 15
##   cand_id   cand_name cand_pty_affili… cand_election_yr cand_office_st cand_office
##   <chr>     <chr>     <chr>                       <dbl> <chr>          <chr>      
## 1 H0AL02087 ROBY, MA… REP                          2016 AL             H          
## 2 H0AL02095 JOHN, RO… IND                          2016 AL             H          
## 3 H0AL05163 BROOKS, … REP                          2016 AL             H          
## 4 H0AL07086 SEWELL, … DEM                          2016 AL             H          
## 5 H0AR01083 CRAWFORD… REP                          2016 AR             H          
## 6 H0AR03055 WOMACK, … REP                          2016 AR             H          
## # … with 9 more variables: cand_office_district <chr>, cand_ici <chr>,
## #   cand_status <chr>, cand_pcc <chr>, cand_st1 <chr>, cand_st2 <chr>,
## #   cand_city <chr>, cand_st <chr>, cand_zip <chr>

UCI Machine Learning Repository

This is a great resource for datasets of excellent quality. I was able to load the Iris dataset from a link on the site.

read.csv("http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data")
##     X5.1 X3.5 X1.4 X0.2     Iris.setosa
## 1    4.9  3.0  1.4  0.2     Iris-setosa
## 2    4.7  3.2  1.3  0.2     Iris-setosa
## 3    4.6  3.1  1.5  0.2     Iris-setosa
## 4    5.0  3.6  1.4  0.2     Iris-setosa
## 5    5.4  3.9  1.7  0.4     Iris-setosa
## 6    4.6  3.4  1.4  0.3     Iris-setosa
## 7    5.0  3.4  1.5  0.2     Iris-setosa
## 8    4.4  2.9  1.4  0.2     Iris-setosa
## 9    4.9  3.1  1.5  0.1     Iris-setosa
## 10   5.4  3.7  1.5  0.2     Iris-setosa
## 11   4.8  3.4  1.6  0.2     Iris-setosa
## 12   4.8  3.0  1.4  0.1     Iris-setosa
## 13   4.3  3.0  1.1  0.1     Iris-setosa
## 14   5.8  4.0  1.2  0.2     Iris-setosa
## 15   5.7  4.4  1.5  0.4     Iris-setosa
## 16   5.4  3.9  1.3  0.4     Iris-setosa
## 17   5.1  3.5  1.4  0.3     Iris-setosa
## 18   5.7  3.8  1.7  0.3     Iris-setosa
## 19   5.1  3.8  1.5  0.3     Iris-setosa
## 20   5.4  3.4  1.7  0.2     Iris-setosa
## 21   5.1  3.7  1.5  0.4     Iris-setosa
## 22   4.6  3.6  1.0  0.2     Iris-setosa
## 23   5.1  3.3  1.7  0.5     Iris-setosa
## 24   4.8  3.4  1.9  0.2     Iris-setosa
## 25   5.0  3.0  1.6  0.2     Iris-setosa
## 26   5.0  3.4  1.6  0.4     Iris-setosa
## 27   5.2  3.5  1.5  0.2     Iris-setosa
## 28   5.2  3.4  1.4  0.2     Iris-setosa
## 29   4.7  3.2  1.6  0.2     Iris-setosa
## 30   4.8  3.1  1.6  0.2     Iris-setosa
## 31   5.4  3.4  1.5  0.4     Iris-setosa
## 32   5.2  4.1  1.5  0.1     Iris-setosa
## 33   5.5  4.2  1.4  0.2     Iris-setosa
## 34   4.9  3.1  1.5  0.1     Iris-setosa
## 35   5.0  3.2  1.2  0.2     Iris-setosa
## 36   5.5  3.5  1.3  0.2     Iris-setosa
## 37   4.9  3.1  1.5  0.1     Iris-setosa
## 38   4.4  3.0  1.3  0.2     Iris-setosa
## 39   5.1  3.4  1.5  0.2     Iris-setosa
## 40   5.0  3.5  1.3  0.3     Iris-setosa
## 41   4.5  2.3  1.3  0.3     Iris-setosa
## 42   4.4  3.2  1.3  0.2     Iris-setosa
## 43   5.0  3.5  1.6  0.6     Iris-setosa
## 44   5.1  3.8  1.9  0.4     Iris-setosa
## 45   4.8  3.0  1.4  0.3     Iris-setosa
## 46   5.1  3.8  1.6  0.2     Iris-setosa
## 47   4.6  3.2  1.4  0.2     Iris-setosa
## 48   5.3  3.7  1.5  0.2     Iris-setosa
## 49   5.0  3.3  1.4  0.2     Iris-setosa
## 50   7.0  3.2  4.7  1.4 Iris-versicolor
## 51   6.4  3.2  4.5  1.5 Iris-versicolor
## 52   6.9  3.1  4.9  1.5 Iris-versicolor
## 53   5.5  2.3  4.0  1.3 Iris-versicolor
## 54   6.5  2.8  4.6  1.5 Iris-versicolor
## 55   5.7  2.8  4.5  1.3 Iris-versicolor
## 56   6.3  3.3  4.7  1.6 Iris-versicolor
## 57   4.9  2.4  3.3  1.0 Iris-versicolor
## 58   6.6  2.9  4.6  1.3 Iris-versicolor
## 59   5.2  2.7  3.9  1.4 Iris-versicolor
## 60   5.0  2.0  3.5  1.0 Iris-versicolor
## 61   5.9  3.0  4.2  1.5 Iris-versicolor
## 62   6.0  2.2  4.0  1.0 Iris-versicolor
## 63   6.1  2.9  4.7  1.4 Iris-versicolor
## 64   5.6  2.9  3.6  1.3 Iris-versicolor
## 65   6.7  3.1  4.4  1.4 Iris-versicolor
## 66   5.6  3.0  4.5  1.5 Iris-versicolor
## 67   5.8  2.7  4.1  1.0 Iris-versicolor
## 68   6.2  2.2  4.5  1.5 Iris-versicolor
## 69   5.6  2.5  3.9  1.1 Iris-versicolor
## 70   5.9  3.2  4.8  1.8 Iris-versicolor
## 71   6.1  2.8  4.0  1.3 Iris-versicolor
## 72   6.3  2.5  4.9  1.5 Iris-versicolor
## 73   6.1  2.8  4.7  1.2 Iris-versicolor
## 74   6.4  2.9  4.3  1.3 Iris-versicolor
## 75   6.6  3.0  4.4  1.4 Iris-versicolor
## 76   6.8  2.8  4.8  1.4 Iris-versicolor
## 77   6.7  3.0  5.0  1.7 Iris-versicolor
## 78   6.0  2.9  4.5  1.5 Iris-versicolor
## 79   5.7  2.6  3.5  1.0 Iris-versicolor
## 80   5.5  2.4  3.8  1.1 Iris-versicolor
## 81   5.5  2.4  3.7  1.0 Iris-versicolor
## 82   5.8  2.7  3.9  1.2 Iris-versicolor
## 83   6.0  2.7  5.1  1.6 Iris-versicolor
## 84   5.4  3.0  4.5  1.5 Iris-versicolor
## 85   6.0  3.4  4.5  1.6 Iris-versicolor
## 86   6.7  3.1  4.7  1.5 Iris-versicolor
## 87   6.3  2.3  4.4  1.3 Iris-versicolor
## 88   5.6  3.0  4.1  1.3 Iris-versicolor
## 89   5.5  2.5  4.0  1.3 Iris-versicolor
## 90   5.5  2.6  4.4  1.2 Iris-versicolor
## 91   6.1  3.0  4.6  1.4 Iris-versicolor
## 92   5.8  2.6  4.0  1.2 Iris-versicolor
## 93   5.0  2.3  3.3  1.0 Iris-versicolor
## 94   5.6  2.7  4.2  1.3 Iris-versicolor
## 95   5.7  3.0  4.2  1.2 Iris-versicolor
## 96   5.7  2.9  4.2  1.3 Iris-versicolor
## 97   6.2  2.9  4.3  1.3 Iris-versicolor
## 98   5.1  2.5  3.0  1.1 Iris-versicolor
## 99   5.7  2.8  4.1  1.3 Iris-versicolor
## 100  6.3  3.3  6.0  2.5  Iris-virginica
## 101  5.8  2.7  5.1  1.9  Iris-virginica
## 102  7.1  3.0  5.9  2.1  Iris-virginica
## 103  6.3  2.9  5.6  1.8  Iris-virginica
## 104  6.5  3.0  5.8  2.2  Iris-virginica
## 105  7.6  3.0  6.6  2.1  Iris-virginica
## 106  4.9  2.5  4.5  1.7  Iris-virginica
## 107  7.3  2.9  6.3  1.8  Iris-virginica
## 108  6.7  2.5  5.8  1.8  Iris-virginica
## 109  7.2  3.6  6.1  2.5  Iris-virginica
## 110  6.5  3.2  5.1  2.0  Iris-virginica
## 111  6.4  2.7  5.3  1.9  Iris-virginica
## 112  6.8  3.0  5.5  2.1  Iris-virginica
## 113  5.7  2.5  5.0  2.0  Iris-virginica
## 114  5.8  2.8  5.1  2.4  Iris-virginica
## 115  6.4  3.2  5.3  2.3  Iris-virginica
## 116  6.5  3.0  5.5  1.8  Iris-virginica
## 117  7.7  3.8  6.7  2.2  Iris-virginica
## 118  7.7  2.6  6.9  2.3  Iris-virginica
## 119  6.0  2.2  5.0  1.5  Iris-virginica
## 120  6.9  3.2  5.7  2.3  Iris-virginica
## 121  5.6  2.8  4.9  2.0  Iris-virginica
## 122  7.7  2.8  6.7  2.0  Iris-virginica
## 123  6.3  2.7  4.9  1.8  Iris-virginica
## 124  6.7  3.3  5.7  2.1  Iris-virginica
## 125  7.2  3.2  6.0  1.8  Iris-virginica
## 126  6.2  2.8  4.8  1.8  Iris-virginica
## 127  6.1  3.0  4.9  1.8  Iris-virginica
## 128  6.4  2.8  5.6  2.1  Iris-virginica
## 129  7.2  3.0  5.8  1.6  Iris-virginica
## 130  7.4  2.8  6.1  1.9  Iris-virginica
## 131  7.9  3.8  6.4  2.0  Iris-virginica
## 132  6.4  2.8  5.6  2.2  Iris-virginica
## 133  6.3  2.8  5.1  1.5  Iris-virginica
## 134  6.1  2.6  5.6  1.4  Iris-virginica
## 135  7.7  3.0  6.1  2.3  Iris-virginica
## 136  6.3  3.4  5.6  2.4  Iris-virginica
## 137  6.4  3.1  5.5  1.8  Iris-virginica
## 138  6.0  3.0  4.8  1.8  Iris-virginica
## 139  6.9  3.1  5.4  2.1  Iris-virginica
## 140  6.7  3.1  5.6  2.4  Iris-virginica
## 141  6.9  3.1  5.1  2.3  Iris-virginica
## 142  5.8  2.7  5.1  1.9  Iris-virginica
## 143  6.8  3.2  5.9  2.3  Iris-virginica
## 144  6.7  3.3  5.7  2.5  Iris-virginica
## 145  6.7  3.0  5.2  2.3  Iris-virginica
## 146  6.3  2.5  5.0  1.9  Iris-virginica
## 147  6.5  3.0  5.2  2.0  Iris-virginica
## 148  6.2  3.4  5.4  2.3  Iris-virginica
## 149  5.9  3.0  5.1  1.8  Iris-virginica

Directly From Kaggle NEVER GOT TO WORK!!!

I see that a lot of you have found great datasets on Kaggle. Rather than download and upload, I want to show how to directly pull from kaggle.com This process will require an account with kaggle.

library(httr) username <- “nurfnick” authkey <-.rs.askForPassword(“foo”) dataset <- httr::GET(“https://www.kaggle.com/ahsen1330/us-police-shootings/download”, httr::authenticate(username, authkey, type = “basic”))

temp <- tempfile() download.file(dataset$url,temp) data <- read.csv(unz(temp, “train.csv”)) unlink(temp)