Tablas de contingencia sobre ingresos, frecuencias y variables sobre las Casen 2006-2020

Por comunas

VE-CC-AJ

DataIntelligence
date: 15-09-2021

1 Las variables de ingreso a utilizar serán:

Tipo
Ingreso total Ingreso autónomo Ingreso del trabajo
año
2017 ytotcor yautcor ytrabajocor
2015 ytotcor yautcor ytrabajocor
2013 ytotcor yautcor ytrabajocor
2011 ytrabaj yautaj ytrabaj
2009 ytrabaj yautaj ytrabaj
2006 ytrabaj yautaj ytrabaj


1.1 Lectura de bases de datos Casen

dataset_06 <<- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2006_c.rds")
dataset_06 <- mutate_if(dataset_06, is.factor, as.character)
dataset_09 <<- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2009_c.rds")
dataset_09 <- mutate_if(dataset_09, is.factor, as.character)
dataset_11 <<- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2011_c.rds")
dataset_11 <- mutate_if(dataset_11, is.factor, as.character)
dataset_13 <<- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2013_c.rds")
dataset_13 <- mutate_if(dataset_13, is.factor, as.character)
dataset_15 <<- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2015_c.rds")
dataset_15 <- mutate_if(dataset_15, is.factor, as.character)
dataset_17 <<- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2017_c.rds")
dataset_17 <- mutate_if(dataset_17, is.factor, as.character)
dataset_20 <<- readRDS("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/casen/casen_2020.rds")
dataset_20 <- mutate_if(dataset_20, is.factor, as.character)

1.1.1 Homologación de alfabetismo

dataset_06$E1[dataset_06$E1 == "No sabe /Sin dato"] <- NA

dataset_11$e1[dataset_11$e1 == "Sí, lee y escribe"] <- "Sí"
dataset_11$e1[dataset_11$e1 == "No, sólo lee"] <- "No"
dataset_11$e1[dataset_11$e1 == "No, ninguno"] <- "No"
dataset_11$e1[dataset_11$e1 == "No, sólo escribe"] <- "No"

dataset_13$e1[dataset_13$e1 == "Sí, lee y escribe"] <- "Sí"
dataset_13$e1[dataset_13$e1 == "No, ninguno"] <- "No"
dataset_13$e1[dataset_13$e1 == "No, sólo lee"] <- "No"
dataset_13$e1[dataset_13$e1 == "No, sólo escribe"] <- "No"
dataset_13$e1[dataset_13$e1 == "NS/NR"] <- NA

dataset_15$e1[dataset_15$e1 == "Sí, lee y escribe"] <- "Sí"
dataset_15$e1[dataset_15$e1 == "No, ninguno"] <- "No"
dataset_15$e1[dataset_15$e1 == "No, sólo lee"] <- "No"
dataset_15$e1[dataset_15$e1 == "No, sólo escribe"] <- "No"

dataset_17$e1[dataset_17$e1 == "Sí, lee y escribe"] <- "Sí"
dataset_17$e1[dataset_17$e1 == "No, sólo lee"] <- "No"
dataset_17$e1[dataset_17$e1 == "No, ninguno"] <- "No"
dataset_17$e1[dataset_17$e1 == "No sabe/responde"] <- NA
dataset_17$e1[dataset_17$e1 == "No, sólo escribe"] <- "No"

1.1.2 Homologación de etnia

fn_etnia <- function(data_df3){
data_df3$Etnia[data_df3$Etnia == "Aimara" ]  <- "Aymara"
data_df3$Etnia[data_df3$Etnia == "No pertenece a ninguno de estos pueblos indígenas" ]  <-  "No pertenece a ningún pueblo indígena" 
data_df3$Etnia[data_df3$Etnia == "Mapuche"]  <- "Mapuche"
data_df3$Etnia[data_df3$Etnia == "Diaguita"]  <- "Diaguita"
data_df3$Etnia[data_df3$Etnia == "Atacameño" ]  <- "Atacameño"
data_df3$Etnia[data_df3$Etnia == "Atacameño (Likan-Antai)" ]  <- "Atacameño"
data_df3$Etnia[data_df3$Etnia == "Atacameño (Likán Antai)" ]  <- "Atacameño"
data_df3$Etnia[data_df3$Etnia == "Atacameño (Likán-Antai)" ]  <- "Atacameño"
data_df3$Etnia[data_df3$Etnia == "Quechua" ]  <- "Quechua"
data_df3$Etnia[data_df3$Etnia == "Yámana o Yagán" ]  <- "Yagán"
data_df3$Etnia[data_df3$Etnia == "Yagan" ]  <- "Yagán"
data_df3$Etnia[data_df3$Etnia == "Yagán (Yámana)" ]  <- "Yagán"
data_df3$Etnia[data_df3$Etnia == "Rapa-Nui o Pascuenses"]  <- "Pascuense"
data_df3$Etnia[data_df3$Etnia == "Rapa-Nui"]  <- "Pascuense"
data_df3$Etnia[data_df3$Etnia == "Rapa Nui (Pascuense)"]  <- "Pascuense"
data_df3$Etnia[data_df3$Etnia == "Rapa Nui"]  <- "Pascuense"
data_df3$Etnia[data_df3$Etnia == "Collas"]  <- "Coya"
data_df3$Etnia[data_df3$Etnia == "Kawashkar o Alacalufes" ]  <- "Alacalufe"
data_df3$Etnia[data_df3$Etnia == "Kawashkar" ]  <- "Alacalufe"
data_df3$Etnia[data_df3$Etnia == "Kawésqar (Alacalufes)" ]  <- "Alacalufe"
data_df3$Etnia[data_df3$Etnia == "Kawésqar" ]  <- "Alacalufe"
data_df3$Etnia[data_df3$Etnia == "Kawaskar" ]  <- "Alacalufe"
data_df3$Etnia[data_df3$Etnia == "Chango" ]  <- "Chango"
data_df3$Etnia[data_df3$Etnia ==  "Sin dato"]  <- NA
data_df3$Etnia[data_df3$Etnia ==  "NS/NR"   ]  <- NA
data_df3$Etnia[data_df3$Etnia == "No sabe/no responde" ]  <- NA

data_df3 <<- data_df3
}

1.1.3 Homologación de migración

for (i in unique(dataset_20$r2_pais_esp)) {
  pais <- gsub("(^[[:space:]]+|[[:space:]]+$)", "", i)
  pais <- tolower(pais)
  dataset_20$r2_pais_esp[dataset_20$r2_pais_esp == i] <- str_to_title(pais) 
} 

dataset_11$r2p_cod[dataset_11$r2p_cod == "No contesta"] <- "NS/NR"
dataset_13$r2_p_cod[dataset_13$r2_p_cod == "No contesta"] <- "NS/NR"
dataset_15$r2espp_cod[dataset_15$r2espp_cod == "No contesta"] <- "NS/NR"
dataset_17$r2_p_cod[dataset_17$r2_p_cod == "No Bien Especificado"] <- "NS/NR"
dataset_17$r2_p_cod[dataset_17$r2_p_cod == "No Responde"] <- "NS/NR"
dataset_20$r2_pais_esp[dataset_20$r2_pais_esp == "No Bien Especificado"] <- "NS/NR"
dataset_20$r2_pais_esp[dataset_20$r2_pais_esp == ""] <- NA

Corrección s4

ab <- dataset_11
unique_d_2011 <- unique(ab$s7)
 
ab <- dataset_13
unique_d_2013 <- unique(ab$s5)
 
ab <- dataset_15
unique_d_2015 <- unique(ab$s4)
 
ab <- dataset_17
unique_d_2017 <- unique(ab$s4)
  
  
unique_d_2011 <- as.data.frame(unique_d_2011)
colnames(unique_d_2011)[1] <- "superduper"
unique_d_2013 <- as.data.frame(unique_d_2013)
colnames(unique_d_2013)[1] <- "superduper"
unique_d_2015 <- as.data.frame(unique_d_2015)
colnames(unique_d_2015)[1] <- "superduper"
unique_d_2017 <- as.data.frame(unique_d_2017)
colnames(unique_d_2017)[1] <- "superduper" 
 
el_total <- rbind( unique_d_2011, unique_d_2013, unique_d_2015, unique_d_2017)
el_total_final <- unique(el_total)
el_total_final$observation <- 1:nrow(el_total_final) 
 
dataf1 <- data.frame()
for (n in 1:nrow(el_total_final)) {
  dataf1 <- rbind(dataf1,paste0("m['Variable'][m['Variable'] ==  '",el_total_final[n,1],"']"," <- '",el_total_final[n,2],"'"))
}
dataf1 <- as.data.frame(dataf1) 
write_xlsx(dataf1,"el_total_final.xlsx")
 
la_correccion_1 <- function(m) {

m['Variable'][m['Variable'] ==  'NA'] <- '1'
m['Variable'][m['Variable'] ==  '2'] <- '2'
m['Variable'][m['Variable'] ==  '3'] <- '3'
m['Variable'][m['Variable'] ==  '0'] <- '4'
m['Variable'][m['Variable'] ==  '4'] <- '5'
m['Variable'][m['Variable'] ==  '5'] <- '6'
m['Variable'][m['Variable'] ==  '1'] <- '7'
m['Variable'][m['Variable'] ==  '7'] <- '8'
m['Variable'][m['Variable'] ==  '6'] <- '9'
m['Variable'][m['Variable'] ==  '8'] <- '10'
m['Variable'][m['Variable'] ==  '11'] <- '11'
m['Variable'][m['Variable'] ==  '10'] <- '12'
m['Variable'][m['Variable'] ==  '13'] <- '13'
m['Variable'][m['Variable'] ==  '16'] <- '14'
m['Variable'][m['Variable'] ==  '9'] <- '15'
m['Variable'][m['Variable'] ==  '12'] <- '16'
m['Variable'][m['Variable'] ==  '14'] <- '17'
m['Variable'][m['Variable'] ==  '99'] <- '18'
m['Variable'][m['Variable'] ==  '15'] <- '19'
m['Variable'][m['Variable'] ==  '20'] <- '20'
m['Variable'][m['Variable'] ==  '17'] <- '21'
m['Variable'][m['Variable'] ==  '18'] <- '22'
m['Variable'][m['Variable'] ==  '19'] <- '23'
m['Variable'][m['Variable'] ==  'No sabe'] <- '24'
m['Variable'][m['Variable'] ==  'No ha tenido hijos'] <- '25'
m['Variable'][m['Variable'] ==  '22'] <- '26'

data_df3 <<- m
 
}

Corrección s5

ab <- dataset_11
unique_d_2011 <- unique(ab$s8)
 
ab <- dataset_13
unique_d_2013 <- unique(ab$s6)
 
ab <- dataset_15
unique_d_2015 <- unique(ab$s5)
 
ab <- dataset_17
unique_d_2017 <- unique(ab$s5)
  
  
unique_d_2011 <- as.data.frame(unique_d_2011)
colnames(unique_d_2011)[1] <- "superduper"
unique_d_2013 <- as.data.frame(unique_d_2013)
colnames(unique_d_2013)[1] <- "superduper"
unique_d_2015 <- as.data.frame(unique_d_2015)
colnames(unique_d_2015)[1] <- "superduper"
unique_d_2017 <- as.data.frame(unique_d_2017)
colnames(unique_d_2017)[1] <- "superduper" 
 
el_total <- rbind( unique_d_2011, unique_d_2013, unique_d_2015, unique_d_2017)
el_total_final <- unique(el_total)
el_total_final$observation <- 1:nrow(el_total_final) 
 
dataf1 <- data.frame()
for (n in 1:nrow(el_total_final)) {
  dataf1 <- rbind(dataf1,paste0("m['Variable'][m['Variable'] ==  '",el_total_final[n,1],"']"," <- '",el_total_final[n,2],"'"))
}
dataf1 <- as.data.frame(dataf1) 
write_xlsx(dataf1,"el_total_final.xlsx")
 
la_correccion_2 <- function(m) {

m['Variable'][m['Variable'] ==  'NA'] <- '1'
m['Variable'][m['Variable'] ==  '18'] <- '2'
m['Variable'][m['Variable'] ==  '21'] <- '3'
m['Variable'][m['Variable'] ==  '24'] <- '4'
m['Variable'][m['Variable'] ==  '25'] <- '5'
m['Variable'][m['Variable'] ==  '17'] <- '6'
m['Variable'][m['Variable'] ==  '19'] <- '7'
m['Variable'][m['Variable'] ==  '32'] <- '8'
m['Variable'][m['Variable'] ==  '26'] <- '9'
m['Variable'][m['Variable'] ==  '22'] <- '10'
m['Variable'][m['Variable'] ==  '14'] <- '11'
m['Variable'][m['Variable'] ==  '23'] <- '12'
m['Variable'][m['Variable'] ==  '29'] <- '13'
m['Variable'][m['Variable'] ==  '42'] <- '14'
m['Variable'][m['Variable'] ==  '27'] <- '15'
m['Variable'][m['Variable'] ==  '28'] <- '16'
m['Variable'][m['Variable'] ==  '16'] <- '17'
m['Variable'][m['Variable'] ==  '15'] <- '18'
m['Variable'][m['Variable'] ==  '30'] <- '19'
m['Variable'][m['Variable'] ==  '20'] <- '20'
m['Variable'][m['Variable'] ==  '38'] <- '21'
m['Variable'][m['Variable'] ==  '37'] <- '22'
m['Variable'][m['Variable'] ==  '99'] <- '23'
m['Variable'][m['Variable'] ==  '31'] <- '24'
m['Variable'][m['Variable'] ==  '13'] <- '25'
m['Variable'][m['Variable'] ==  '35'] <- '26'
m['Variable'][m['Variable'] ==  '12'] <- '27'
m['Variable'][m['Variable'] ==  '45'] <- '28'
m['Variable'][m['Variable'] ==  '33'] <- '29'
m['Variable'][m['Variable'] ==  '36'] <- '30'
m['Variable'][m['Variable'] ==  '43'] <- '31'
m['Variable'][m['Variable'] ==  '41'] <- '32'
m['Variable'][m['Variable'] ==  '34'] <- '33'
m['Variable'][m['Variable'] ==  '39'] <- '34'
m['Variable'][m['Variable'] ==  '48'] <- '35'
m['Variable'][m['Variable'] ==  '40'] <- '36'
m['Variable'][m['Variable'] ==  '49'] <- '37'
m['Variable'][m['Variable'] ==  '44'] <- '38'
m['Variable'][m['Variable'] ==  '47'] <- '39'
m['Variable'][m['Variable'] ==  '50'] <- '40'
m['Variable'][m['Variable'] ==  '46'] <- '41'
m['Variable'][m['Variable'] ==  'No sabe / No recuerda'] <- '42'
m['Variable'][m['Variable'] ==  '10'] <- '43'
m['Variable'][m['Variable'] ==  '11'] <- '44'
m['Variable'][m['Variable'] ==  'Ns/Nr'] <- '45'
m['Variable'][m['Variable'] ==  'No sabe/No recuerda'] <- '46'
m['Variable'][m['Variable'] ==  '53'] <- '47'
m['Variable'][m['Variable'] ==  '52'] <- '48'
m['Variable'][m['Variable'] ==  '55'] <- '49'
m['Variable'][m['Variable'] ==  '51'] <- '50'
m['Variable'][m['Variable'] ==  '56'] <- '51'
m['Variable'][m['Variable'] ==  '62'] <- '52'
m['Variable'][m['Variable'] ==  '57'] <- '53'
m['Variable'][m['Variable'] ==  '58'] <- '54'
m['Variable'][m['Variable'] ==  '54'] <- '55'
m['Variable'][m['Variable'] ==  '60'] <- '56'
m['Variable'][m['Variable'] ==  '61'] <- '57'
m['Variable'][m['Variable'] ==  '65'] <- '58'


data_df3 <<- m
 
}

Corrección s6

ab <- dataset_11
unique_d_2011 <- unique(ab$s9)
 
ab <- dataset_13
unique_d_2013 <- unique(ab$s7)
 
ab <- dataset_15
unique_d_2015 <- unique(ab$s6)
 
ab <- dataset_17
unique_d_2017 <- unique(ab$s6)
  
  
unique_d_2011 <- as.data.frame(unique_d_2011)
colnames(unique_d_2011)[1] <- "superduper"
unique_d_2013 <- as.data.frame(unique_d_2013)
colnames(unique_d_2013)[1] <- "superduper"
unique_d_2015 <- as.data.frame(unique_d_2015)
colnames(unique_d_2015)[1] <- "superduper"
unique_d_2017 <- as.data.frame(unique_d_2017)
colnames(unique_d_2017)[1] <- "superduper" 
 
el_total <- rbind( unique_d_2011, unique_d_2013, unique_d_2015, unique_d_2017)
el_total_final <- unique(el_total)
el_total_final$observation <- 1:nrow(el_total_final) 
 
dataf1 <- data.frame()
for (n in 1:nrow(el_total_final)) {
  dataf1 <- rbind(dataf1,paste0("m['Variable'][m['Variable'] ==  '",el_total_final[n,1],"']"," <- '",el_total_final[n,2],"'"))
}
dataf1 <- as.data.frame(dataf1) 
write_xlsx(dataf1,"el_total_final.xlsx")
 
la_correccion_3 <- function(m) {

m['Variable'][m['Variable'] ==  'NA'] <- '1'
m['Variable'][m['Variable'] ==  'No'] <- '2'
m['Variable'][m['Variable'] ==  'Sí, amamantando'] <- '3'
m['Variable'][m['Variable'] ==  'Sí, embarazada'] <- '4'
m['Variable'][m['Variable'] ==  'NS/NR'] <- '5'
m['Variable'][m['Variable'] ==  'Sin dato'] <- '6'

data_df3 <<- m
 
}

Corrección s7

ab <- dataset_11
unique_d_2011 <- unique(ab$s11)
 
ab <- dataset_13
unique_d_2013 <- unique(ab$s9)
 
ab <- dataset_15
unique_d_2015 <- unique(ab$s7)
 
ab <- dataset_17
unique_d_2017 <- unique(ab$s7)
  
  
unique_d_2011 <- as.data.frame(unique_d_2011)
colnames(unique_d_2011)[1] <- "superduper"
unique_d_2013 <- as.data.frame(unique_d_2013)
colnames(unique_d_2013)[1] <- "superduper"
unique_d_2015 <- as.data.frame(unique_d_2015)
colnames(unique_d_2015)[1] <- "superduper"
unique_d_2017 <- as.data.frame(unique_d_2017)
colnames(unique_d_2017)[1] <- "superduper" 
 
el_total <- rbind( unique_d_2011, unique_d_2013, unique_d_2015, unique_d_2017)
el_total_final <- unique(el_total)
el_total_final$observation <- 1:nrow(el_total_final) 
 
dataf1 <- data.frame()
for (n in 1:nrow(el_total_final)) {
  dataf1 <- rbind(dataf1,paste0("m['Variable'][m['Variable'] ==  '",el_total_final[n,1],"']"," <- '",el_total_final[n,2],"'"))
}
dataf1 <- as.data.frame(dataf1) 
write_xlsx(dataf1,"el_total_final.xlsx")
 
la_correccion_4 <- function(m) {

m['Variable'][m['Variable'] ==  'NA'] <- '1'
m['Variable'][m['Variable'] ==  'No sabe, no recuerda'] <- '2'
m['Variable'][m['Variable'] ==  'No retiró alimentos'] <- '3'
m['Variable'][m['Variable'] ==  'Sí, leche Purita Mamá'] <- '4'
m['Variable'][m['Variable'] ==  'Sí, ambos alimentos'] <- '5'
m['Variable'][m['Variable'] ==  'Sí, leche Purita Fortificada (26% MG)'] <- '6'
m['Variable'][m['Variable'] ==  'No sabe / No recuerda'] <- '7'
m['Variable'][m['Variable'] ==  'Sí, leche Purita Fortificada'] <- '8'
m['Variable'][m['Variable'] ==  'Ns/Nr'] <- '9'
m['Variable'][m['Variable'] ==  'Sí, Leche Purita Mamá'] <- '10'
m['Variable'][m['Variable'] ==  'No retiró alimento'] <- '11'
m['Variable'][m['Variable'] ==  'No sabe/No recuerda'] <- '12'
m['Variable'][m['Variable'] ==  'Sí, Leche Purita Fortificada'] <- '13'


data_df3 <<- m
 
}

Corrección s8

ab <- dataset_11
unique_d_2011 <- unique(ab$s13)
 
ab <- dataset_13
unique_d_2013 <- unique(ab$s10)
 
ab <- dataset_15
unique_d_2015 <- unique(ab$s8)
 
ab <- dataset_17
unique_d_2017 <- unique(ab$s8)
  
  
unique_d_2011 <- as.data.frame(unique_d_2011)
colnames(unique_d_2011)[1] <- "superduper"
unique_d_2013 <- as.data.frame(unique_d_2013)
colnames(unique_d_2013)[1] <- "superduper"
unique_d_2015 <- as.data.frame(unique_d_2015)
colnames(unique_d_2015)[1] <- "superduper"
unique_d_2017 <- as.data.frame(unique_d_2017)
colnames(unique_d_2017)[1] <- "superduper" 
 
el_total <- rbind( unique_d_2011, unique_d_2013, unique_d_2015, unique_d_2017)
el_total_final <- unique(el_total)
el_total_final$observation <- 1:nrow(el_total_final) 
 
dataf1 <- data.frame()
for (n in 1:nrow(el_total_final)) {
  dataf1 <- rbind(dataf1,paste0("m['Variable'][m['Variable'] ==  '",el_total_final[n,1],"']"," <- '",el_total_final[n,2],"'"))
}
dataf1 <- as.data.frame(dataf1) 
write_xlsx(dataf1,"el_total_final.xlsx")
 
la_correccion_5 <- function(m) {

m['Variable'][m['Variable'] ==  'NA'] <- '1'
m['Variable'][m['Variable'] ==  'No'] <- '2'
m['Variable'][m['Variable'] ==  'No sabe, no recuerda'] <- '3'
m['Variable'][m['Variable'] ==  'Sí, durante el último año'] <- '4'
m['Variable'][m['Variable'] ==  'Sí, hace más de 2 años hasta 3 años'] <- '5'
m['Variable'][m['Variable'] ==  'Sí, hace más de un año hasta 2 años'] <- '6'
m['Variable'][m['Variable'] ==  'No sabe / No recuerda'] <- '7'
m['Variable'][m['Variable'] ==  'Ns/Nr'] <- '8'
m['Variable'][m['Variable'] ==  'Sí, hace más de un año y hasta 2 años'] <- '9'
m['Variable'][m['Variable'] ==  'Sí, hace más de 2 años y hasta 3 años'] <- '10'
m['Variable'][m['Variable'] ==  'No sabe/No recuerda'] <- '11'


data_df3 <<- m
 
}

Corrección s9

ab <- dataset_11
unique_d_2011 <- unique(ab$s14)
 
ab <- dataset_13
unique_d_2013 <- unique(ab$s11)
 
ab <- dataset_15
unique_d_2015 <- unique(ab$s9)
 
ab <- dataset_17
unique_d_2017 <- unique(ab$s9)
  
  
unique_d_2011 <- as.data.frame(unique_d_2011)
colnames(unique_d_2011)[1] <- "superduper"
unique_d_2013 <- as.data.frame(unique_d_2013)
colnames(unique_d_2013)[1] <- "superduper"
unique_d_2015 <- as.data.frame(unique_d_2015)
colnames(unique_d_2015)[1] <- "superduper"
unique_d_2017 <- as.data.frame(unique_d_2017)
colnames(unique_d_2017)[1] <- "superduper" 
 
el_total <- rbind( unique_d_2011, unique_d_2013, unique_d_2015, unique_d_2017)
el_total_final <- unique(el_total)
el_total_final$observation <- 1:nrow(el_total_final) 
 
dataf1 <- data.frame()
for (n in 1:nrow(el_total_final)) {
  dataf1 <- rbind(dataf1,paste0("m['Variable'][m['Variable'] ==  '",el_total_final[n,1],"']"," <- '",el_total_final[n,2],"'"))
}
dataf1 <- as.data.frame(dataf1) 
write_xlsx(dataf1,"el_total_final.xlsx")
 
la_correccion_6 <- function(m) {

m['Variable'][m['Variable'] ==  'NA'] <- '1'
m['Variable'][m['Variable'] ==  'No cree que lo necesite'] <- '2'
m['Variable'][m['Variable'] ==  'No le corresponde'] <- '3'
m['Variable'][m['Variable'] ==  'Le da miedo o le disgusta'] <- '4'
m['Variable'][m['Variable'] ==  'Otra razón'] <- '5'
m['Variable'][m['Variable'] ==  'No tiene tiempo'] <- '6'
m['Variable'][m['Variable'] ==  'Se le olvida hacérselo'] <- '7'
m['Variable'][m['Variable'] ==  'No conoce el examen'] <- '8'
m['Variable'][m['Variable'] ==  'El horario del consultorio no le sirve'] <- '9'
m['Variable'][m['Variable'] ==  'No sabe'] <- '10'
m['Variable'][m['Variable'] ==  'No ha podido conseguir hora'] <- '11'
m['Variable'][m['Variable'] ==  'No sabía que tenía que hacerse examen'] <- '12'
m['Variable'][m['Variable'] ==  'No sabe dónde hacérselo'] <- '13'
m['Variable'][m['Variable'] ==  'No tiene dinero'] <- '14'
m['Variable'][m['Variable'] ==  'No conoce ese examen'] <- '15'
m['Variable'][m['Variable'] ==  'No sabía que tenía que hacerse ese examen'] <- '16'



data_df3 <<- m
 
}

2 Generación de tablas de contingencia Etnia

df_tablas <- data.frame()

for (var1 in 1:6) {
funcion1 <- function(n){

 xx<-switch(n, "2011","2013","2015","2017","2020")
 tanio <<- xx

 switch (var1,
        case = v1 <- switch(n,"s7","s5","s4","s4"),
        case = v1 <- switch(n,"s8","s6","s5","s5"),
        case = v1 <- switch(n,"s9","s7","s6","s6"),
        case = v1 <- switch(n,"s11","s9","s7","s7"),
        case = v1 <- switch(n,"s13","s10","s8","s8"),
        case = v1 <- switch(n,"s14","s11","s9","s9")
)
 
if(xx==2011) {
    
eliminated <- dataset_11 
b <- eliminated$comuna
c <- eliminated[,c(v1)]
d <- eliminated$e1 #alfabetismo
e <- eliminated$r6 #etnia
f <- eliminated$sexo
anio <- 2011

}

if(xx==2013) {
   
eliminated <- dataset_13 
b <- eliminated$comuna
c <- eliminated[,c(v1)]
d <- eliminated$e1 #alfabetismo
e <- eliminated$r6 #etnia
f <- eliminated$sexo
anio <- 2013

}
 
if(xx==2015) {
   
eliminated <- dataset_15  
b <- eliminated$comuna
c <- eliminated[,c(v1)]
d <- eliminated$e1 #alfabetismo
e <- eliminated$r3 #etnia
f <- eliminated$sexo
anio <- 2015
}

if(xx==2017) {
    
eliminated <- dataset_17 
b <- eliminated$comuna
c <- eliminated[,c(v1)]
d <- eliminated$e1 #alfabetismo
e <- eliminated$r3 #etnia
f <- eliminated$sexo
anio <- 2017
}

if(xx==2020) {
   
eliminated <- dataset_20  
b <- eliminated$comuna
c <- eliminated[,c(v1)]
d <- eliminated$sexo #alfabetismo
e <- eliminated$r3 #etnia
f <- eliminated$sexo
anio <- 2020
}
 
################ -- frecuencia
expan<-switch(n, "expc_full","expc","expc_todas","expc","expc")

tabla_matp <-xtabs(eliminated[,(expan)]~b+c+d+e+f, data = eliminated)
tabla_matp <- as.data.frame(tabla_matp)
tabla_matp <-tabla_matp[!(tabla_matp$Freq == 0),]  
################ 

tabla_matp$Año = xx
df <- tabla_matp
names(df)[1] <- "Comuna"
names(df)[2] <- "Variable"
names(df)[3] <- "Alfabetismo"
names(df)[4] <- "Etnia"
names(df)[5] <- "Sexo"  
direc_cod_com <- paste0("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/codigos_comunales_2006-2020.rds")
codigos_comunales <- readRDS(file = direc_cod_com)
names(codigos_comunales)[1] <- "Código" 

tabla_df = merge( x = df, y = codigos_comunales, by = "Comuna", all.x = TRUE) 

tabla_df2 <<- tabla_df 

}

data_df3 <- data.frame()
for (n in 1:4){
  funcion1(n)

  data_df3 <- rbind(data_df3,tabla_df2)

}
variable_e <- switch(var1,"s4","s5","s6","s7","s8","s9")  

data_df3 <- mutate_if(data_df3, is.factor, as.character)
fn_etnia(data_df3)
data_df3$cod_Variable <- data_df3$Variable
 switch (var1,
        case = la_correccion_1(data_df3), 
        case = la_correccion_2(data_df3), 
        case = la_correccion_3(data_df3), 
        case = la_correccion_4(data_df3), 
        case = la_correccion_5(data_df3)
)

data_df3$cod_sexo <- data_df3$Sexo
data_df3$cod_sexo[data_df3$cod_sexo == "Hombre"] <- "01"
data_df3$cod_sexo[data_df3$cod_sexo == "Mujer"] <- "02"

data_df3$cod_alfa <- data_df3$Alfabetismo
data_df3$cod_alfa[data_df3$cod_alfa == "Sí"] <- "01"
data_df3$cod_alfa[data_df3$cod_alfa == "No"] <- "02"

Etnia <- c(sort(unique(data_df3$Etnia)[-6]),"No pertenece a ningún pueblo indígena",NA)
Etnia<- as.data.frame(Etnia)
Etnia$cod_etnia <- paste("00",seq(1:nrow(Etnia)), sep = "")
codigos <- Etnia$cod_etnia
rango <- seq(1:nrow(Etnia))
cadena <- paste("",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(1),4)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
codigos <- cbind(Etnia,cadena)  
colnames(codigos) <- c("Etnia","cadena","cod_etnia")

data_df3 <- merge(x=data_df3, y=codigos, by="Etnia") 
data_df3 <- data_df3[,c(2,8,3,9,1,13,4,11,5,10,6,7)]
assign(paste0("tabla_",variable_e),data_df3)
print(paste0("tabla_",variable_e))
}
## [1] "tabla_s4"
## [1] "tabla_s5"
## [1] "tabla_s6"
## [1] "tabla_s7"
## [1] "tabla_s8"
## [1] "tabla_s9"

2.1 s4 ¿Cuántos hijos nacidos vivos ha tenido en su vida?

datatable(tabla_s4, extensions = 'Buttons', escape = FALSE, rownames = FALSE,
          options = list(dom = 'Bfrtip',
          buttons = list('colvis', list(extend = 'collection',
          buttons = list(
          list(extend='copy'),
          list(extend='excel',
            filename = 'tabla_s4'),
          list(extend='pdf',
            filename= 'tabla_s4')),
          text = 'Download')), scrollX = TRUE)) 

2.2 s5 ¿Qué edad tenía cuando nació su primer hijo?

datatable(tabla_s5, extensions = 'Buttons', escape = FALSE, rownames = FALSE,
          options = list(dom = 'Bfrtip',
          buttons = list('colvis', list(extend = 'collection',
          buttons = list(
          list(extend='copy'),
          list(extend='excel',
            filename = 'tabla_s4'),
          list(extend='pdf',
            filename= 'tabla_s4')),
          text = 'Download')), scrollX = TRUE)) 

2.3 s6 ¿Se encuentra en este momento embarazada o amamantando?

datatable(tabla_s6, extensions = 'Buttons', escape = FALSE, rownames = FALSE,
          options = list(dom = 'Bfrtip',
          buttons = list('colvis', list(extend = 'collection',
          buttons = list(
          list(extend='copy'),
          list(extend='excel',
            filename = 'tabla_s4'),
          list(extend='pdf',
            filename= 'tabla_s4')),
          text = 'Download')), scrollX = TRUE)) 

2.4 s7 ¿Recibió o retiró, gratuitamente, alimentos del consultorio u hospital?

datatable(tabla_s7, extensions = 'Buttons', escape = FALSE, rownames = FALSE,
          options = list(dom = 'Bfrtip',
          buttons = list('colvis', list(extend = 'collection',
          buttons = list(
          list(extend='copy'),
          list(extend='excel',
            filename = 'tabla_s4'),
          list(extend='pdf',
            filename= 'tabla_s4')),
          text = 'Download')), scrollX = TRUE)) 

2.5 s8 En los últimos tres años, ¿Se ha hecho el Papanicolau?

datatable(tabla_s8, extensions = 'Buttons', escape = FALSE, rownames = FALSE,
          options = list(dom = 'Bfrtip',
          buttons = list('colvis', list(extend = 'collection',
          buttons = list(
          list(extend='copy'),
          list(extend='excel',
            filename = 'tabla_s4'),
          list(extend='pdf',
            filename= 'tabla_s4')),
          text = 'Download')), scrollX = TRUE)) 

2.6 s9 ¿Por qué no se lo ha hecho?

datatable(tabla_s9, extensions = 'Buttons', escape = FALSE, rownames = FALSE,
          options = list(dom = 'Bfrtip',
          buttons = list('colvis', list(extend = 'collection',
          buttons = list(
          list(extend='copy'),
          list(extend='excel',
            filename = 'tabla_s4'),
          list(extend='pdf',
            filename= 'tabla_s4')),
          text = 'Download')), scrollX = TRUE)) 

3 Generación de tablas de contingencia Migración

df_tablas <- data.frame()

for (var1 in 1:6) {
funcion1 <- function(n){

 xx<-switch(n, "2011","2013","2015","2017","2020")
 tanio <<- xx

 switch (var1,
        case = v1 <- switch(n,"s7","s5","s4","s4"),
        case = v1 <- switch(n,"s8","s6","s5","s5"),
        case = v1 <- switch(n,"s9","s7","s6","s6"),
        case = v1 <- switch(n,"s11","s9","s7","s7"),
        case = v1 <- switch(n,"s13","s10","s8","s8"),
        case = v1 <- switch(n,"s14","s11","s9","s9")
)
 
if(xx==2011) {
    
eliminated <- dataset_11 
b <- eliminated$comuna
c <- eliminated[,c(v1)]
d <- eliminated$e1 #alfabetismo
e <- eliminated$r2p_cod #etnia
f <- eliminated$sexo
anio <- 2011

}

if(xx==2013) {
   
eliminated <- dataset_13 
b <- eliminated$comuna
c <- eliminated[,c(v1)]
d <- eliminated$e1 #alfabetismo
e <- eliminated$r2_p_cod #etnia
f <- eliminated$sexo
anio <- 2013

}
 
if(xx==2015) {
   
eliminated <- dataset_15  
b <- eliminated$comuna
c <- eliminated[,c(v1)]
d <- eliminated$e1 #alfabetismo
e <- eliminated$r2espp_cod #etnia
f <- eliminated$sexo
anio <- 2015
}

if(xx==2017) {
    
eliminated <- dataset_17 
b <- eliminated$comuna
c <- eliminated[,c(v1)]
d <- eliminated$e1 #alfabetismo
e <- eliminated$r2_p_cod #etnia
f <- eliminated$sexo
anio <- 2017
}

if(xx==2020) {
   
eliminated <- dataset_20  
b <- eliminated$comuna
c <- eliminated[,c(v1)]
d <- eliminated$sexo #alfabetismo
e <- eliminated$r2_pais_esp #etnia
f <- eliminated$sexo
anio <- 2020
}
 
################ -- frecuencia
expan<-switch(n, "expc_full","expc","expc_todas","expc","expc")

tabla_matp <-xtabs(eliminated[,(expan)]~b+c+d+e+f, data = eliminated)
tabla_matp <- as.data.frame(tabla_matp)
tabla_matp <-tabla_matp[!(tabla_matp$Freq == 0),]  
################ 

tabla_matp$Año = xx
df <- tabla_matp
names(df)[1] <- "Comuna"
names(df)[2] <- "Variable"
names(df)[3] <- "Alfabetismo"
names(df)[4] <- "Migra"
names(df)[5] <- "Sexo"  
direc_cod_com <- paste0("C:/Users/enamo/Desktop/Shiny-R/Casen_en_pandemia_2020/codigos_comunales_2006-2020.rds")
codigos_comunales <- readRDS(file = direc_cod_com)
names(codigos_comunales)[1] <- "Código" 

tabla_df = merge( x = df, y = codigos_comunales, by = "Comuna", all.x = TRUE) 

tabla_df2 <<- tabla_df 

}

data_df3 <- data.frame()
for (n in 1:4){
  funcion1(n)

  data_df3 <- rbind(data_df3,tabla_df2)

}
variable_e <- switch(var1,"s4","s5","s6","s7","s8","s9")  

data_df3 <- mutate_if(data_df3, is.factor, as.character)
# fn_etnia(data_df3)
data_df3$cod_Variable <- data_df3$Variable
 switch (var1,
        case = la_correccion_1(data_df3), 
        case = la_correccion_2(data_df3), 
        case = la_correccion_3(data_df3), 
        case = la_correccion_4(data_df3), 
        case = la_correccion_5(data_df3)
)

data_df3$cod_sexo <- data_df3$Sexo
data_df3$cod_sexo[data_df3$cod_sexo == "Hombre"] <- "01"
data_df3$cod_sexo[data_df3$cod_sexo == "Mujer"] <- "02"

data_df3$cod_alfa <- data_df3$Alfabetismo
data_df3$cod_alfa[data_df3$cod_alfa == "Sí"] <- "01"
data_df3$cod_alfa[data_df3$cod_alfa == "No"] <- "02"

Migra <- c(sort(unique(data_df3$Migra)[-14]),"NS/NR")
Migra<- as.data.frame(Migra)
Migra$cod_Migra <- paste("00",seq(1:nrow(Migra)), sep = "")
codigos <- Migra$cod_Migra
rango <- seq(1:nrow(Migra))
cadena <- paste("",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(1),4)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
codigos <- cbind(Migra,cadena)
colnames(codigos) <- c("Migra","cadena","cod_Migra") 
data_df3 <- merge(x=data_df3, y=codigos, by="Migra")

data_df3 <- data_df3[,c(2,8,3,9,1,13,4,11,5,10,6,7)]
assign(paste0("tabla_",variable_e),data_df3)
print(paste0("tabla_",variable_e))
}
## [1] "tabla_s4"
## [1] "tabla_s5"
## [1] "tabla_s6"
## [1] "tabla_s7"
## [1] "tabla_s8"
## [1] "tabla_s9"

3.1 s4 ¿Cuántos hijos nacidos vivos ha tenido en su vida?

datatable(tabla_s4, extensions = 'Buttons', escape = FALSE, rownames = FALSE,
          options = list(dom = 'Bfrtip',
          buttons = list('colvis', list(extend = 'collection',
          buttons = list(
          list(extend='copy'),
          list(extend='excel',
            filename = 'tabla_s4'),
          list(extend='pdf',
            filename= 'tabla_s4')),
          text = 'Download')), scrollX = TRUE)) 

3.2 s5 ¿Qué edad tenía cuando nació su primer hijo?

datatable(tabla_s5, extensions = 'Buttons', escape = FALSE, rownames = FALSE,
          options = list(dom = 'Bfrtip',
          buttons = list('colvis', list(extend = 'collection',
          buttons = list(
          list(extend='copy'),
          list(extend='excel',
            filename = 'tabla_s4'),
          list(extend='pdf',
            filename= 'tabla_s4')),
          text = 'Download')), scrollX = TRUE)) 

3.3 s6 ¿Se encuentra en este momento embarazada o amamantando?

datatable(tabla_s6, extensions = 'Buttons', escape = FALSE, rownames = FALSE,
          options = list(dom = 'Bfrtip',
          buttons = list('colvis', list(extend = 'collection',
          buttons = list(
          list(extend='copy'),
          list(extend='excel',
            filename = 'tabla_s4'),
          list(extend='pdf',
            filename= 'tabla_s4')),
          text = 'Download')), scrollX = TRUE)) 

3.4 s7 ¿Recibió o retiró, gratuitamente, alimentos del consultorio u hospital?

datatable(tabla_s7, extensions = 'Buttons', escape = FALSE, rownames = FALSE,
          options = list(dom = 'Bfrtip',
          buttons = list('colvis', list(extend = 'collection',
          buttons = list(
          list(extend='copy'),
          list(extend='excel',
            filename = 'tabla_s4'),
          list(extend='pdf',
            filename= 'tabla_s4')),
          text = 'Download')), scrollX = TRUE)) 

3.5 s8 En los últimos tres años, ¿Se ha hecho el Papanicolau?

datatable(tabla_s8, extensions = 'Buttons', escape = FALSE, rownames = FALSE,
          options = list(dom = 'Bfrtip',
          buttons = list('colvis', list(extend = 'collection',
          buttons = list(
          list(extend='copy'),
          list(extend='excel',
            filename = 'tabla_s4'),
          list(extend='pdf',
            filename= 'tabla_s4')),
          text = 'Download')), scrollX = TRUE)) 

3.6 s9 ¿Por qué no se lo ha hecho?

datatable(tabla_s9, extensions = 'Buttons', escape = FALSE, rownames = FALSE,
          options = list(dom = 'Bfrtip',
          buttons = list('colvis', list(extend = 'collection',
          buttons = list(
          list(extend='copy'),
          list(extend='excel',
            filename = 'tabla_s4'),
          list(extend='pdf',
            filename= 'tabla_s4')),
          text = 'Download')), scrollX = TRUE))