The rats data set in the survival package in R can be loaded by typing “data(rats)”. It contains data on 300 rats-3 selected from each of 100 litters-that were followed for tumor incidence. The variable time is the follow-up times and the variable status is the event indicator. a. How many rats had tumors? What was the total rat-time contributed by all the animals? What was the incidence rate for tumors?
library(survival)
##data(rats, package="survival")
rats1 <- rats[ which(rats$status=='1'), ] ##no. of rats who had tumor
##nrows(rats1)
sum(rats$time) ##total rat time
## [1] 27132
42 rats had tumors incidence rate=42/27132=0.00154
## m=42
## T=27132
0.00154+1.96*sqrt(42/(27132^2))
## [1] 0.002008165
0.00154-1.96*sqrt(42/(27132^2))
## [1] 0.001071835
(42/27132)*exp(1.96*sqrt(1/42))
## [1] 0.002094658
(42/27132)*exp(-1.96*sqrt(1/42))
## [1] 0.001143989
expfit<-survreg(Surv(time, status) ~1, data=rats, dist="exponential")
summary(expfit)
##
## Call:
## survreg(formula = Surv(time, status) ~ 1, data = rats, dist = "exponential")
## Value Std. Error z p
## (Intercept) 6.471 0.154 41.9 <2e-16
##
## Scale fixed at 1
##
## Exponential distribution
## Loglik(model)= -313.8 Loglik(intercept only)= -313.8
## Number of Newton-Raphson Iterations: 5
## n= 300
exp(-coef(expfit))
## (Intercept)
## 0.001547988
confint(expfit)
## 2.5 % 97.5 %
## (Intercept) 6.16837 6.773229
exp(-confint(expfit))
## 2.5 % 97.5 %
## (Intercept) 0.002094646 0.001143995
It agrees more with log-transformed confidence intervals.
weibfit<-survreg(Surv(time, status) ~1, data=rats, dist="weibull")
summary(weibfit)
##
## Call:
## survreg(formula = Surv(time, status) ~ 1, data = rats, dist = "weibull")
## Value Std. Error z p
## (Intercept) 5.0791 0.0825 61.55 <2e-16
## Log(scale) -1.2995 0.1425 -9.12 <2e-16
##
## Scale= 0.273
##
## Weibull distribution
## Loglik(model)= -287.1 Loglik(intercept only)= -287.1
## Number of Newton-Raphson Iterations: 9
## n= 300
lambda<-exp(-coef(weibfit))
lambda
## (Intercept)
## 0.006225671
confint(weibfit)
## 2.5 % 97.5 %
## (Intercept) 4.917331 5.240818
exp(-confint(weibfit))
## 2.5 % 97.5 %
## (Intercept) 0.007318641 0.005295925
Compared to Weibull distribution, exponential distribution is a good model for this data.