library(haven)
library(foreign)
library(readr)
library(dplyr)
library(ggplot2)
library(broom)
library(car)
library(MASS)
library(lmtest)
library(zoo)
library(nortest)
library(plotrix)
library(scales)
library(tableone)
library(Weighted.Desc.Stat)
library(mitools)
library(survey)
library(VGAM)
library(stargazer)
library(sandwich)
library(pastecs)
library(muhaz)
library(ggpubr)
library(survminer)
library(eha)
library(reshape2)
library(data.table)
library(magrittr)
library(tidyverse)
library(sjmisc)
library(sjPlot)
library(sjmisc)
library(sjlabelled)
library(weights)
library(GGally)
library(tigris)
library(RColorBrewer)
library(patchwork)
library(tidycensus)
library(censusapi)
library(spdep)
la<- na.omit(get_acs(geography = "tract",
year = 2015,
state = "CA",
county = "Los Angeles",
variables = c("DP05_0078PE","DP05_0070PE"),
output ="wide",
geometry = TRUE)%>%
rename(p.nhblack =DP05_0078PE, p.hisp=DP05_0070PE))
## Getting data from the 2011-2015 5-year ACS
## Downloading feature geometry from the Census website. To cache shapefiles for use in future sessions, set `options(tigris_use_cache = TRUE)`.
## Using the ACS Data Profile
queen.cont<-poly2nb(la, queen = T)
summary(queen.cont)
## Neighbour list object:
## Number of regions: 2326
## Number of nonzero links: 14794
## Percentage nonzero weights: 0.2734426
## Average number of links: 6.360275
## Link number distribution:
##
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 19 20 25
## 4 9 49 200 464 609 494 273 134 51 23 5 2 2 2 2 1 1 1
## 4 least connected regions:
## 145 266 1341 1342 with 1 link
## 1 most connected region:
## 1025 with 25 links
lalw<-nb2listw(queen.cont, style="W")
knn<-knearneigh(x = coordinates(as(la, "Spatial")), k = 4)
knn4<-knn2nb(knn = knn)
k4lw<-nb2listw(knn4)
plot(as(la, "Spatial"),
main="Queen Neighbors")
plot(lalw,
coords=coordinates(as(la, "Spatial")),
add=T,
col=2)
plot(as(la, "Spatial"),
main="k=4 Neighbors")
plot(knn4,
coords=coordinates(as(la, "Spatial")),
add=T,
col=3)
#1
moran.test(la$p.nhblack,
listw=lalw)
##
## Moran I test under randomisation
##
## data: la$p.nhblack
## weights: lalw
##
## Moran I statistic standard deviate = 33.351, p-value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.3947038302 -0.0004301075 0.0001403648
moran.test(la$p.nhblack,
listw=k4lw)
##
## Moran I test under randomisation
##
## data: la$p.nhblack
## weights: k4lw
##
## Moran I statistic standard deviate = 30.166, p-value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.4155597307 -0.0004301075 0.0001901684
moran.mc(la$p.nhblack,
listw=lalw,
nsim=999)
##
## Monte-Carlo simulation of Moran I
##
## data: la$p.nhblack
## weights: lalw
## number of simulations + 1: 1000
##
## statistic = 0.3947, observed rank = 1000, p-value = 0.001
## alternative hypothesis: greater
moran.mc(la$p.nhblack,
listw=k4lw,
nsim=999)
##
## Monte-Carlo simulation of Moran I
##
## data: la$p.nhblack
## weights: k4lw
## number of simulations + 1: 1000
##
## statistic = 0.41556, observed rank = 1000, p-value = 0.001
## alternative hypothesis: greater
moran.plot(la$p.nhblack,
listw=lalw)
moran.plot(la$p.nhblack,
listw=k4lw)
#2
moran.test(la$p.hisp,
listw=lalw)
##
## Moran I test under randomisation
##
## data: la$p.hisp
## weights: lalw
##
## Moran I statistic standard deviate = 60.722, p-value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.7196681961 -0.0004301075 0.0001406360
moran.test(la$p.hisp,
listw=k4lw)
##
## Moran I test under randomisation
##
## data: la$p.hisp
## weights: k4lw
##
## Moran I statistic standard deviate = 53.605, p-value < 2.2e-16
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.7395077523 -0.0004301075 0.0001905358
moran.mc(la$p.hisp,
listw=lalw,
nsim=999)
##
## Monte-Carlo simulation of Moran I
##
## data: la$p.hisp
## weights: lalw
## number of simulations + 1: 1000
##
## statistic = 0.71967, observed rank = 1000, p-value = 0.001
## alternative hypothesis: greater
moran.mc(la$p.hisp,
listw=k4lw,
nsim=999)
##
## Monte-Carlo simulation of Moran I
##
## data: la$p.hisp
## weights: k4lw
## number of simulations + 1: 1000
##
## statistic = 0.73951, observed rank = 1000, p-value = 0.001
## alternative hypothesis: greater
moran.plot(la$p.hisp,
listw=lalw)
moran.plot(la$p.hisp,
listw=k4lw)
# Percent Non-Hispanic Black
locali<-localmoran(la$p.nhblack, k4lw, p.adjust.method="fdr")
la$locali<-locali[,1]
la$localp<-locali[,5]
la$cl<-as.factor(ifelse(la$localp<=.05,"Clustered","NotClustered"))
# Locali
la%>%
ggplot()+
geom_sf(aes(fill = locali))+
scale_fill_viridis_c()+
ggtitle(label =
"Non-Hispanic Black (%) LA County, CA
Cluster Map (Local Moran's I Value)" )
# Localp
la%>%
ggplot()+
geom_sf(aes(fill = localp))+
scale_fill_viridis_c()+
ggtitle(label =
"Non-Hispanic Black (%) LA County, CA
Cluster Map (Local Moran's I - (P below 0.05)" )
# Percent Hispanic
# Locali
locali<-localmoran(la$p.hisp, k4lw, p.adjust.method="fdr")
la$locali<-locali[,1]
la$localp<-locali[,5]
la$cl<-as.factor(ifelse(la$localp<=.05,"Clustered","NotClustered"))
la%>%
ggplot()+
geom_sf(aes(fill = locali))+
scale_fill_viridis_c()+
ggtitle(label =
"Hispanic (%) LA County, CA
Cluster Map (Local Moran's I Value)")
# Localp
locali<-localmoran(la$p.hisp, k4lw, p.adjust.method="fdr")
la$locali<-locali[,1]
la$localp<-locali[,5]
la$cl<-as.factor(ifelse(la$localp<=.05,"Clustered","NotClustered"))
la%>%
ggplot()+
geom_sf(aes(fill = localp))+
scale_fill_viridis_c()+
ggtitle(label =
"Hispanic (%) LA County, CA
Cluster Map (Local Moran's I - (P below 0.05)")
The analysis shows that many of the clusters of non-Hispanic blacks and Hispanics within LA county are either near or adjacent to each other. The clustering is more visable using the p-value scale for local Moran I. The map for non-Hispanic blacks shows significant localized clusters of non-Hispanic blacks located north of 34.25 parallel in the western and eastern region of the county. The map for Hispanics shows significant localized clusters of Hispanics mostly located north of 34.25 parallel in the central, eastern, and slightly western region of the county. Additionally, there are significant local clusters in the southwestern region of the county for both non-Hispanic blacks and Hispanics.