INDICADORES SOBRE PARTIDOS POLÍTICOS EN LAPOP

Carga de los datos

## Loading required package: grid
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## 
## The following objects are masked from 'package:base':
## 
##     format.pval, round.POSIXt, trunc.POSIXt, units
## 
## Loading required package: plyr
## 
## Attaching package: 'plyr'
## 
## The following objects are masked from 'package:Hmisc':
## 
##     is.discrete, summarize
## Warning in
## read.spss("/Users/David1/Dropbox/Doctorado/Data/LAPOP/LAPOP_Casos.sav"):
## /Users/David1/Dropbox/Doctorado/Data/LAPOP/LAPOP_Casos.sav: Unrecognized
## record type 7, subtype 18 encountered in system file
## re-encoding from latin1
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
## Warning in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels)
## else paste0(labels, : duplicated levels in factors are deprecated
##   [1] "year"         "pais"         "idnum"        "weight1500"  
##   [5] "estratopri"   "upm"          "prov"         "municipio_06"
##   [9] "municipio08"  "municipio10"  "cluster"      "ur"          
##  [13] "tamano"       "idiomaq"      "q1"           "ls3"         
##  [17] "a4"           "a1"           "a2"           "a3"          
##  [21] "a4i"          "soct1"        "soct2"        "soct3"       
##  [25] "resp6"        "idio1"        "idio2"        "idio3"       
##  [29] "idio4"        "cp1"          "cp2"          "cp4a"        
##  [33] "cp4"          "np1"          "np1a"         "np1b"        
##  [37] "np1c"         "np2"          "muni10"       "sgl1"        
##  [41] "sgl2"         "lgl2"         "lgl2a"        "lgl2b"       
##  [45] "lgl3"         "muni5"        "muni6"        "muni8"       
##  [49] "muni9"        "muni11"       "muni15"       "cp5_0406"    
##  [53] "cp5_0812"     "cp6"          "cp7"          "cp8"         
##  [57] "cp9"          "cp10"         "cp11"         "cp12"        
##  [61] "cp13"         "cp20"         "cp5a"         "cp5b"        
##  [65] "cp5c"         "cp5d"         "cp5e"         "ls6"         
##  [69] "ls6a"         "it1"          "it1a"         "it1b"        
##  [73] "l1"           "l1b"          "it2"          "it3"         
##  [77] "immig1"       "immig2"       "prot1"        "prot2"       
##  [81] "prot3"        "prot4"        "y4"           "jc1"         
##  [85] "jc4"          "jc10"         "jc12"         "jc13"        
##  [89] "jc15"         "jc16"         "jc13a"        "jc15a"       
##  [93] "jc16a"        "gbmil1"       "vic1ext"      "vic1exta"    
##  [97] "aoj1"         "aoj1a"        "aoj1b"        "vic2_0406"   
## [101] "vic2_1012"    "vic2aa"       "vic1hogar"    "vic20"       
## [105] "vic21"        "vic27"        "aoj8"         "aoj11"       
## [109] "aoj11a"       "aoj12"        "aoj12a"       "aoj16a"      
## [113] "aoj17"        "aoj18"        "aoj9"         "aoj16"       
## [117] "aoj16b"       "aoj19"        "st1"          "st2"         
## [121] "st3"          "st4"          "b1"           "b2"          
## [125] "b3"           "b4"           "b6"           "b10a"        
## [129] "b11"          "b13"          "b14"          "b12"         
## [133] "b15"          "b18"          "b20"          "b20a"        
## [137] "b21"          "b21a"         "b31"          "b32"         
## [141] "b43"          "b16"          "b17"          "b19"         
## [145] "b33"          "b37"          "b23"          "b42"         
## [149] "b50"          "b46"          "b47"          "b48"         
## [153] "b40"          "b45"          "b39"          "b51"         
## [157] "b44"          "resp0"        "resp1"        "resp2"       
## [161] "resp3"        "resp4"        "resp5"        "n1"          
## [165] "n3"           "n9"           "n11"          "n12"         
## [169] "n15"          "n10"          "epp1"         "epp2"        
## [173] "epp3"         "ec1"          "ec2"          "ec3"         
## [177] "ec4"          "wt1"          "wt2"          "m1"          
## [181] "m2"           "m10"          "m11"          "pop101"      
## [185] "pop102"       "pop103"       "pop107"       "pop113"      
## [189] "pop106"       "pop109"       "pop110"       "pop112"      
## [193] "eff1"         "eff2"         "ing2"         "ing4"        
## [197] "pn2"          "pn2a"         "dem23"        "ros1"        
## [201] "ros2"         "ros3"         "ros4"         "ros5"        
## [205] "ros6"         "rac3a"        "rac3b"        "rac3c"       
## [209] "pn4"          "pn5"          "pn6"          "e5"          
## [213] "e8"           "e11"          "e15"          "e14"         
## [217] "e3"           "e16"          "e2"           "d32"         
## [221] "d33"          "d34"          "d36"          "d37"         
## [225] "d1"           "d2"           "d3"           "d4"          
## [229] "d5"           "d6"           "acr1"         "abs5"        
## [233] "dem6"         "dem2"         "dem11"        "aut1"        
## [237] "aut2"         "aut2_04"      "pp1"          "pp2"         
## [241] "dc1"          "dc10"         "dc13"         "exc1"        
## [245] "exc2"         "exc4"         "exc5"         "exc6"        
## [249] "exc11"        "exc13"        "exc14"        "exc15"       
## [253] "exc16"        "exc17"        "exc18"        "exc19"       
## [257] "exc7"         "per1"         "per2"         "per3"        
## [261] "per4"         "per5"         "per6"         "per7"        
## [265] "per8"         "per9"         "per10"        "crisis1"     
## [269] "crisis2"      "vb1"          "vb2"          "vb3_10"      
## [273] "vb3_08"       "vb3_06"       "vb7"          "vb4"         
## [277] "vb5"          "vb8"          "vb6"          "vb50"        
## [281] "vb60"         "vb10"         "vb11_10"      "vb11_08"     
## [285] "vb11_06"      "vb12"         "pol1"         "pol2"        
## [289] "dis2"         "dis3"         "dis4"         "dis5"        
## [293] "vb20"         "vb61"         "vb21"         "sd1"         
## [297] "sd2"          "sd3"          "sd4"          "sd5"         
## [301] "sd6"          "sd7"          "sd8"          "sd9"         
## [305] "sd10"         "sd11"         "sd12"         "ls4"         
## [309] "clien1"       "clien2"       "rac1c"        "econ1a"      
## [313] "econ1b"       "econ1c"       "econ1d"       "econ2"       
## [317] "rac4"         "dis11"        "dis17"        "dis13"       
## [321] "dis12"        "rac1a"        "rac1b"        "rac1d"       
## [325] "rac1e"        "cct1"         "dem13a"       "dem13b"      
## [329] "dem13c"       "dem13d"       "dem13"        "pop1"        
## [333] "pop2"         "pop3"         "pop4"         "pop5"        
## [337] "pop6"         "pop7"         "pop8"         "pop9"        
## [341] "pop10"        "pop11"        "pc1"          "pc2"         
## [345] "pc3"          "pc5"          "pc9"          "pc12"        
## [349] "pc14"         "pc15"         "pc19"         "pc4"         
## [353] "pc8"          "pc13"         "pc21"         "der1"        
## [357] "der2"         "der3"         "der4"         "aa1"         
## [361] "aa2"          "aa3"          "aa4"          "exploit1"    
## [365] "exploit2"     "exploit5a"    "exploit6"     "exploit5b"   
## [369] "paz1"         "paz2"         "paz3"         "paz4"        
## [373] "paz5"         "lib1"         "lib2"         "lib3"        
## [377] "lib4"         "eref1"        "eref2"        "eref3"       
## [381] "wc1"          "wc2"          "wc3"          "ed"          
## [385] "q2"           "y1"           "y2"           "y3"          
## [389] "haicr1"       "q3c"          "q3ca"         "q3_08"       
## [393] "q3_0406"      "q5a"          "q5b"          "q4"          
## [397] "q10"          "q10a"         "q10a_06"      "q10a1"       
## [401] "q10b"         "q10a3"        "q10c"         "q16"         
## [405] "q14"          "q10d"         "q10e"         "q10f"        
## [409] "q11"          "q12"          "q12a"         "q13"         
## [413] "q15"          "etid"         "leng1"        "www1"        
## [417] "ind1"         "ind2"         "ind3"         "ind4"        
## [421] "gi0"          "gi1"          "gi2"          "gi3"         
## [425] "gi5"          "gi4"          "gi6"          "r1"          
## [429] "r3"           "r4"           "r4a"          "r5"          
## [433] "r6"           "r7"           "r8"           "r12"         
## [437] "r14"          "r15"          "r16"          "r18"         
## [441] "r20"          "r21"          "r22"          "r23"         
## [445] "r24"          "r25"          "ocup4a"       "ocup1a"      
## [449] "ocup1a_04"    "ocup1"        "ocup1_04"     "ocup1_06"    
## [453] "ocup1b1"      "ocup1b1_06"   "ocup1b2"      "ocup1anc"    
## [457] "ocup12a"      "ocup12"       "ocup1c"       "ocup27"      
## [461] "ocup28"       "ocup29"       "ocup30"       "ocup31"      
## [465] "ocup31a"      "ocup4"        "desoc2"       "desoc1"      
## [469] "mig1"         "mig2"         "mig3"         "pen1"        
## [473] "pen3"         "pen4"         "sal1"         "sal2"        
## [477] "sal4"         "colorr"       "sexi"         "colori"      
## [481] "intid"        "fecha"        "ti"           "ti3"         
## [485] "order"        "filter__"     "municipio12"  "vb3_12"      
## [489] "vb11_12"      "q10new"       "canetid"      "r26"         
## [493] "odd"          "gi7_12"

Indicadores a trabajar

Personas que simpatizan con algún partido político

lapop$simp.part <- lapop$vb10 == "Sí"

tab.simp.part <- summarySE(data=lapop, measurevar="simp.part", groupvars=c("pais", "year"), na.rm=T, .drop=T)

tab.simp.part <- tab.simp.part[-1,]

tab.simp.part
##      pais year    N simp.part        sd          se         ci
## 2  México 2006 1560 0.4852564 0.4999428 0.012657795 0.02482810
## 3  México 2008 1560 0.3166667 0.4653254 0.011781333 0.02310893
## 4  México 2010 1562 0.2804097 0.4493433 0.011369405 0.02230092
## 5  México 2012 1560 0.3544872 0.4785110 0.012115174 0.02376375
## 6    Perú 2006 1500 0.2973333 0.4572369 0.011805806 0.02315765
## 7    Perú 2008 1500 0.1906667 0.3929578 0.010146127 0.01990211
## 8    Perú 2010 1500 0.2080000 0.4060122 0.010483190 0.02056328
## 9    Perú 2012 1500 0.1626667 0.3691844 0.009532299 0.01869806
## 10  Chile 2006 1517 0.2531312 0.4349488 0.011167228 0.02190485
## 11  Chile 2008 1527 0.2056320 0.4042951 0.010346154 0.02029418
## 12 Brasil 2006 1214 0.3278418 0.4696203 0.013478375 0.02644351
## 13 Brasil 2008 1497 0.2478290 0.4318963 0.011162682 0.02189617
## 14 Brasil 2010 2482 0.3049960 0.4604985 0.009243306 0.01812539
## 15 Brasil 2012 1500 0.2986667 0.4578260 0.011821016 0.02318749
simp1 <- ggplot(tab.simp.part, aes(x=year, y=simp.part*100, shape=pais)) + geom_point(size=3.5) + xlab("Año") + ylab("% de entrevistados") + ylim(0, 60) + labs(shape="País") + theme_bw()

simp2 <- simp1 + ggtitle("Barómetro de las Américas: % de entrevistados que\n simpatizan con algún partido político,\n según año de la encuesta, por país") + theme(plot.title = element_text(lineheight=.8,face="bold"))

simp2

png(filename="/Users/David1/Dropbox/Doctorado/Tesis/Redaccion 2015/Tablas y graficos/Cap8_VotoIdeo/Simpartia partidos.png",
    width = 7, height = 5,  units = "in", res=200, antialias="none")
simp2
dev.off()
## pdf 
##   2

Confianza en instituciones

Recodificación de variables de confianza en las instituciones

b21r <- as.numeric(lapop$b21)
b20r <- as.numeric(lapop$b20)
b12r <- as.numeric(lapop$b12)
b31r <- as.numeric(lapop$b31)
b10ar <- as.numeric(lapop$b10a)
b13r <- as.numeric(lapop$b13)
b14r <- as.numeric(lapop$b14)
b23r <- as.numeric(lapop$b23)
b37r <- as.numeric(lapop$b37)


b21r[b21r > 7] <- NA
b20r[b20r > 7] <- NA
b12r[b12r > 7] <- NA
b31r[b31r > 7] <- NA
b10ar[b10ar > 7] <- NA
b13r[b13r > 7] <- NA
b14r[b14r > 7] <- NA
b23r[b23r > 7] <- NA
b37r[b37r > 7] <- NA

b21r<-((b21r -1)/6)*100
b20r<-((b20r -1)/6)*100
b12r<-((b12r -1)/6)*100
b31r<-((b31r -1)/6)*100
b10ar<-((b10ar -1)/6)*100
b13r<-((b13r -1)/6)*100
b14r<-((b14r -1)/6)*100
b23r<-((b23r -1)/6)*100
b37r<-((b37r -1)/6)*100

lapop$c.part <- b21r
lapop$c.igle <- b20r
lapop$c.ffaa <- b12r
lapop$c.corte <- b31r
lapop$c.justi <- b10ar
lapop$c.cong <- b13r
lapop$c.gob <- b14r
lapop$c.sindi <- b23r
lapop$c.media <- b37r

Gráfico para el índice de confianza en las instituciones

library(doBy)
## Loading required package: MASS
confianza <- summaryBy(c.part + c.igle + c.ffaa + c.gob + c.media + c.cong + c.justi ~ pais+year, data = lapop, FUN = function(x) {c(m=mean(x, na.rm=T))})

library(reshape)
## 
## Attaching package: 'reshape'
## 
## The following objects are masked from 'package:plyr':
## 
##     rename, round_any
ind.conf <- melt(confianza, id=c("year", "pais"))

library(car)

ind.conf$variable <- recode(ind.conf$variable, "'c.part.m'='Partidos'; 'c.igle.m'='Iglesia';
                            'c.ffaa.m'='FFAA'; 'c.gob.m'='Gobierno'; 'c.media.m'='Medios';
                            'c.cong.m'='Parlamento'; 'c.justi.m'='Justicia'")



conf.inst <- ggplot(ind.conf, aes(x=value, y=variable)) + geom_point() + facet_grid(pais~year)
conf.inst2 <- conf.inst + xlab("Indice de confianza en las instituciones") + ylab("Instituciones") + ggtitle("Barómetro de las Américas: Indice de confianza en instituciones\n según año de la encuesta y país") + theme_bw() + theme(plot.title = element_text(lineheight=.8,face="bold"))

conf.inst2
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 1 rows containing missing values (geom_point).

png(filename="/Users/David1/Dropbox/Doctorado/Tesis/Redaccion 2015/Tablas y graficos/Cap8_VotoIdeo/Confianza Instituciones.png",
    width = 7, height = 5,  units = "in", res=200, antialias="none")
conf.inst2
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 1 rows containing missing values (geom_point).
dev.off()
## pdf 
##   2

Gráfico para el indice de confianza en partidos

conf.part <- summarySE(data=lapop, measurevar="c.part", groupvars=c("year", "pais"), na.rm=T, .drop=T)

plot.confpart <- ggplot(conf.part, aes(x=year, y=c.part, shape=pais)) + geom_point(size=3.5) + ylim(0,50) + ylab("Indice de confianza en Partidos Políticos") + xlab("Año") + labs(shape="País") + theme_bw() + ggtitle("Barómetro de las Américas: Indice de confianza en\n partidos políticos, según año de la encuesta, por país") + theme(plot.title = element_text(lineheight=.8,face="bold"))

plot.confpart

png(filename="/Users/David1/Dropbox/Doctorado/Tesis/Redaccion 2015/Tablas y graficos/Cap8_VotoIdeo/Confianza partidos.png",
    width = 7, height = 5,  units = "in", res=200, antialias="none")
plot.confpart
dev.off()
## pdf 
##   2

Representatividad de partidos

epp1r <- as.numeric(lapop$epp1)
epp2r <- as.numeric(lapop$epp2)
epp3r <- as.numeric(lapop$epp3)

epp1r[epp1r > 7] <- NA
epp2r[epp2r > 7] <- NA
epp3r[epp3r > 7] <- NA

lapop$epp1r <- ((epp1r-1)/6)*100
lapop$epp2r <- ((epp2r-1)/6)*100
lapop$epp3r <- ((epp3r-1)/6)*100

rep.part <- summaryBy(epp1r +  epp3r ~ pais+year, data = lapop, FUN = function(x) {c(m=mean(x, na.rm=T))})

rep.part <- melt(rep.part, id=c("year", "pais"))

s.rep.part <- subset(rep.part, year == 2008 | year == 2012)

mf_labeller <- function(var, value){
    value <- as.character(value)
    if (var=="variable") { 
        value[value=="epp1r.m"] <- "a) Representan"
        value[value=="epp3r.m"]   <- "b) Escuchan"
    }
    return(value)
}

plot.rep.part <- ggplot(s.rep.part, aes(x=year, y=value, shape=pais)) + geom_point(size = 3.5) + ylim(10, 50) + facet_grid(.~ variable, labeller=mf_labeller) + xlab("Año") + ylab("Nivel") + labs(shape = "País") + theme_bw() + ggtitle("Barómetro de las Américas: ¿Hasta que punto los\n partidos políticos:a) Representan bien a sus votantes?;\n b) Escuchan a la gente como usted?;\n según año de la encuesta, por país") + theme(plot.title = element_text(lineheight=.8,face="bold"))

plot.rep.part

png(filename="/Users/David1/Dropbox/Doctorado/Tesis/Redaccion 2015/Tablas y graficos/Cap8_VotoIdeo/Representatividad partidos.png",
    width = 7, height = 5,  units = "in", res=200, antialias="none")
plot.rep.part
dev.off()
## pdf 
##   2

Necesidad de los partidos para la democracia

dem23r <- as.numeric(lapop$dem23)
dem23r[dem23r > 7] <- NA
lapop$dem23r <- ((dem23r-1)/6)*100

part.neces <- summarySE(lapop, measurevar="dem23r", groupvars=c("pais", "year"), na.rm=T, .drop=T)
## Warning in qt(conf.interval/2 + 0.5, datac$N - 1): NaNs produced
part.neces <- part.neces[-1, ]

g.part.neces <- ggplot(part.neces, aes(x=year, y=dem23r)) + geom_point(size=3) + ylim(0, 100) + facet_grid(.~ pais) + theme_bw() + xlab("Año") + ylab("Nivel de acuerdo") + ggtitle("Barómetro de las Américas: Nivel de acuerdo con la frase\n 'La democracia puede existir sin partidos políticos',\n según año y país") + theme(plot.title = element_text(lineheight=.8,face="bold"))

g.part.neces

png(filename="/Users/David1/Dropbox/Doctorado/Tesis/Redaccion 2015/Tablas y graficos/Cap8_VotoIdeo/Necesidad Partidos.png",
    width = 7, height = 5,  units = "in", res=200, antialias="none")
g.part.neces
dev.off()
## pdf 
##   2

IDENTIFICACIÓN PARTIDARIA EN CSES

Se cargan los datos

load("/Users/David1/Dropbox/Doctorado/Data Analisis/Data/Datos procesados/cses.RData")
names(cses)
##  [1] "cses_mod"         "eleccion"         "eleccion_2"      
##  [4] "pais"             "year"             "id_r_cses"       
##  [7] "id_r_pais"        "genero"           "edad"            
## [10] "educ"             "ingreso"          "urb_rur"         
## [13] "voto_elec"        "vote_pres"        "vote_parl"       
## [16] "cl_party_a"       "cl_party_b"       "cl_party_c"      
## [19] "cl_party_d"       "cl_party_e"       "cl_party_f"      
## [22] "cl_party_g"       "cl_party_h"       "cl_party_i"      
## [25] "cl_party_o"       "cl_noparty"       "num_parties"     
## [28] "mcl_party_a"      "mcl_party_b"      "mcl_party_c"     
## [31] "mcl_party_d"      "mcl_party_e"      "mcl_party_f"     
## [34] "mcl_party_g"      "mcl_party_h"      "mcl_party_i"     
## [37] "mcl_party_o"      "pref_party"       "like_a"          
## [40] "like_b"           "like_c"           "like_d"          
## [43] "like_e"           "like_f"           "like_g"          
## [46] "like_h"           "like_i"           "izde_ent"        
## [49] "izde_a"           "izde_b"           "izde_c"          
## [52] "izde_d"           "izde_e"           "izde_f"          
## [55] "izde_g"           "izde_h"           "izde_i"          
## [58] "e_izde_a"         "e_izde_b"         "e_izde_c"        
## [61] "e_izde_d"         "e_izde_e"         "e_izde_f"        
## [64] "e_izde_g"         "e_izde_h"         "e_izde_i"        
## [67] "performance"      "satdem"           "power_dif"       
## [70] "vote_dif"         "conpol1"          "conpol2"         
## [73] "conpol3"          "conpol_ag"        "lpres_pref"      
## [76] "polariz"          "e_izde_b2"        "filter_."        
## [79] "rec_izde_ent"     "gedad"            "edad2"           
## [82] "n.educ"           "q.ing"            "nom.part.pres"   
## [85] "nom.part.parl"    "alianza.p"        "mismo.parl.pres" 
## [88] "vpres.pref.party" "vparl.pref.party"

Se hace un crosstab de partido por elección, se convierte la tabla en data frame para poder trabajarlo en excel y poner las siglas a los partidos políticos

pref.p <- prop.table(table(cses$eleccion, cses$pref_party),1)*100
pref.p <- as.data.frame(pref.p)
pref.p
##         Var1         Var2        Freq
## 1   BRA_2002      NINGUNO 37.57987220
## 2   BRA_2006      NINGUNO 58.20000000
## 3   BRA_2010      NINGUNO 41.95000000
## 4   CHL_1999      NINGUNO 64.21232877
## 5   CHL_2005      NINGUNO 52.22602740
## 6   CHL_2009      NINGUNO 60.66666667
## 7   MEX_1997      NINGUNO 56.32070831
## 8   MEX_2000      NINGUNO 49.60362401
## 9   MEX_2003      NINGUNO 38.15987934
## 10  MEX_2006      NINGUNO 32.43243243
## 11  MEX_2009      NINGUNO 33.87500000
## 12  PER_2000      NINGUNO 70.68965517
## 13  PER_2001      NINGUNO 59.66010733
## 14  PER_2006      NINGUNO 43.98422091
## 15  PER_2011      NINGUNO 40.76433121
## 16  BRA_2002    PARTIDO A 33.74600639
## 17  BRA_2006    PARTIDO A  5.00000000
## 18  BRA_2010    PARTIDO A 32.80000000
## 19  CHL_1999    PARTIDO A 23.71575342
## 20  CHL_2005    PARTIDO A  3.76712329
## 21  CHL_2009    PARTIDO A  5.33333333
## 22  MEX_1997    PARTIDO A 18.05213970
## 23  MEX_2000    PARTIDO A 20.44167610
## 24  MEX_2003    PARTIDO A 21.92056310
## 25  MEX_2006    PARTIDO A 26.71275927
## 26  MEX_2009    PARTIDO A 33.70833333
## 27  PER_2000    PARTIDO A 10.70780399
## 28  PER_2001    PARTIDO A 15.29516995
## 29  PER_2006    PARTIDO A 15.63116371
## 30  PER_2011    PARTIDO A 20.95541401
## 31  BRA_2002    PARTIDO B  6.74920128
## 32  BRA_2006    PARTIDO B 25.90000000
## 33  BRA_2010    PARTIDO B  6.50000000
## 34  CHL_1999    PARTIDO B  8.64726027
## 35  CHL_2005    PARTIDO B  7.36301370
## 36  CHL_2009    PARTIDO B 11.83333333
## 37  MEX_1997    PARTIDO B  8.60796852
## 38  MEX_2000    PARTIDO B 19.87542469
## 39  MEX_2003    PARTIDO B 24.58521870
## 40  MEX_2006    PARTIDO B 23.38152106
## 41  MEX_2009    PARTIDO B 18.75000000
## 42  PER_2000    PARTIDO B  9.61887477
## 43  PER_2001    PARTIDO B 16.90518784
## 44  PER_2006    PARTIDO B 19.92110454
## 45  PER_2011    PARTIDO B 15.60509554
## 46  BRA_2002    PARTIDO C  4.15335463
## 47  BRA_2006    PARTIDO C  5.90000000
## 48  BRA_2010    PARTIDO C  9.60000000
## 49  CHL_1999    PARTIDO C  0.00000000
## 50  CHL_2005    PARTIDO C  9.07534247
## 51  CHL_2009    PARTIDO C  9.16666667
## 52  MEX_1997    PARTIDO C 15.88785047
## 53  MEX_2000    PARTIDO C  7.98414496
## 54  MEX_2003    PARTIDO C 10.45751634
## 55  MEX_2006    PARTIDO C 16.65619107
## 56  MEX_2009    PARTIDO C  8.16666667
## 57  PER_2000    PARTIDO C  0.36297641
## 58  PER_2001    PARTIDO C  3.39892665
## 59  PER_2006    PARTIDO C  7.93885602
## 60  PER_2011    PARTIDO C  8.98089172
## 61  BRA_2002    PARTIDO D 10.58306709
## 62  BRA_2006    PARTIDO D  1.30000000
## 63  BRA_2010    PARTIDO D  0.15000000
## 64  CHL_1999    PARTIDO D  0.00000000
## 65  CHL_2005    PARTIDO D  7.79109589
## 66  CHL_2009    PARTIDO D  2.66666667
## 67  MEX_1997    PARTIDO D  0.88539105
## 68  MEX_2000    PARTIDO D  0.05662514
## 69  MEX_2003    PARTIDO D  2.61437908
## 70  MEX_2006    PARTIDO D  0.00000000
## 71  MEX_2009    PARTIDO D  3.16666667
## 72  PER_2000    PARTIDO D  1.45190563
## 73  PER_2001    PARTIDO D  1.61001789
## 74  PER_2006    PARTIDO D  3.69822485
## 75  PER_2011    PARTIDO D  6.36942675
## 76  BRA_2002    PARTIDO E  0.83865815
## 77  BRA_2006    PARTIDO E  1.50000000
## 78  BRA_2010    PARTIDO E  0.85000000
## 79  CHL_1999    PARTIDO E  0.00000000
## 80  CHL_2005    PARTIDO E 12.84246575
## 81  CHL_2009    PARTIDO E  5.91666667
## 82  MEX_1997    PARTIDO E  0.09837678
## 83  MEX_2000    PARTIDO E  0.50962627
## 84  MEX_2003    PARTIDO E  1.00553042
## 85  MEX_2006    PARTIDO E  0.12570710
## 86  MEX_2009    PARTIDO E  1.16666667
## 87  PER_2000    PARTIDO E  3.99274047
## 88  PER_2001    PARTIDO E  0.08944544
## 89  PER_2006    PARTIDO E  3.74753452
## 90  PER_2011    PARTIDO E  3.94904459
## 91  BRA_2002    PARTIDO F  0.55910543
## 92  BRA_2006    PARTIDO F  0.60000000
## 93  BRA_2010    PARTIDO F  0.85000000
## 94  CHL_1999    PARTIDO F  0.00000000
## 95  CHL_2005    PARTIDO F  3.85273973
## 96  CHL_2009    PARTIDO F  0.00000000
## 97  MEX_1997    PARTIDO F  0.09837678
## 98  MEX_2000    PARTIDO F  0.00000000
## 99  MEX_2003    PARTIDO F  0.75414781
## 100 MEX_2006    PARTIDO F  0.12570710
## 101 MEX_2009    PARTIDO F  0.75000000
## 102 PER_2000    PARTIDO F  0.54446461
## 103 PER_2001    PARTIDO F  0.08944544
## 104 PER_2006    PARTIDO F  1.87376726
## 105 PER_2011    PARTIDO F  2.22929936
## 106 BRA_2002    PARTIDO G  1.19808307
## 107 BRA_2006    PARTIDO G  0.00000000
## 108 BRA_2010    PARTIDO G  0.20000000
## 109 CHL_1999    PARTIDO G  0.00000000
## 110 CHL_2005    PARTIDO G  0.00000000
## 111 CHL_2009    PARTIDO G  2.00000000
## 112 MEX_1997    PARTIDO G  0.00000000
## 113 MEX_2000    PARTIDO G  0.00000000
## 114 MEX_2003    PARTIDO G  0.20110608
## 115 MEX_2006    PARTIDO G  0.25141420
## 116 MEX_2009    PARTIDO G  0.29166667
## 117 PER_2000    PARTIDO G  0.00000000
## 118 PER_2001    PARTIDO G  0.00000000
## 119 PER_2006    PARTIDO G  0.19723866
## 120 PER_2011    PARTIDO G  0.00000000
## 121 BRA_2002    PARTIDO H  1.31789137
## 122 BRA_2006    PARTIDO H  0.00000000
## 123 BRA_2010    PARTIDO H  0.65000000
## 124 CHL_1999    PARTIDO H  0.00000000
## 125 CHL_2005    PARTIDO H  0.00000000
## 126 CHL_2009    PARTIDO H  0.08333333
## 127 MEX_1997    PARTIDO H  0.00000000
## 128 MEX_2000    PARTIDO H  0.00000000
## 129 MEX_2003    PARTIDO H  0.20110608
## 130 MEX_2006    PARTIDO H  0.31426776
## 131 MEX_2009    PARTIDO H  0.12500000
## 132 PER_2000    PARTIDO H  0.00000000
## 133 PER_2001    PARTIDO H  0.00000000
## 134 PER_2006    PARTIDO H  0.00000000
## 135 PER_2011    PARTIDO H  0.00000000
## 136 BRA_2002    PARTIDO I  0.19968051
## 137 BRA_2006    PARTIDO I  0.00000000
## 138 BRA_2010    PARTIDO I  0.25000000
## 139 CHL_1999    PARTIDO I  0.00000000
## 140 CHL_2005    PARTIDO I  0.00000000
## 141 CHL_2009    PARTIDO I  0.50000000
## 142 MEX_1997    PARTIDO I  0.00000000
## 143 MEX_2000    PARTIDO I  0.00000000
## 144 MEX_2003    PARTIDO I  0.05027652
## 145 MEX_2006    PARTIDO I  0.00000000
## 146 MEX_2009    PARTIDO I  0.00000000
## 147 PER_2000    PARTIDO I  0.00000000
## 148 PER_2001    PARTIDO I  0.00000000
## 149 PER_2006    PARTIDO I  0.00000000
## 150 PER_2011    PARTIDO I  0.00000000
## 151 BRA_2002 OTRO PARTIDO  3.07507987
## 152 BRA_2006 OTRO PARTIDO  1.60000000
## 153 BRA_2010 OTRO PARTIDO  6.20000000
## 154 CHL_1999 OTRO PARTIDO  3.42465753
## 155 CHL_2005 OTRO PARTIDO  3.08219178
## 156 CHL_2009 OTRO PARTIDO  1.83333333
## 157 MEX_1997 OTRO PARTIDO  0.04918839
## 158 MEX_2000 OTRO PARTIDO  1.52887882
## 159 MEX_2003 OTRO PARTIDO  0.05027652
## 160 MEX_2006 OTRO PARTIDO  0.00000000
## 161 MEX_2009 OTRO PARTIDO  0.00000000
## 162 PER_2000 OTRO PARTIDO  2.63157895
## 163 PER_2001 OTRO PARTIDO  2.95169946
## 164 PER_2006 OTRO PARTIDO  3.00788955
## 165 PER_2011 OTRO PARTIDO  1.14649682

Se importan los datos trabajados en excel

id.part0 <- read.csv("/Users/David1/Dropbox/Doctorado/Data Analisis/Data/Datos procesados/part_idAL.csv", sep=";")
id.part <- subset(id.part0, partid!="NINGUNO")

Se preparan los datos y se crea un gráfico con el % de personas que no se identifican con ningún partido, según elección, por país.

id.part2 <- subset(id.part0, partid=="NINGUNO")
id.part2$idp <- 100-id.part2$freqpref

png("/Users/David1/Dropbox/Doctorado/Tesis/Redaccion 2015/Tablas y Graficos/Cap8_VotoIdeo/csesidpart.png", width = 7, height = 5, units = "in", res = 200)
dotchart(id.part2$idp, labels=id.part2$year, cex= 0.7, pch=19, xlim=c(0,70), 
         groups=id.part2$pais, 
         main="CSES: Porcentaje de entrevistados que se identifican con algún partido político,\n según país y elección")
dev.off()
## pdf 
##   2

Se crea una función para producir los gráficos de identificación por partido, por país y elección.

graf.idp <- function(p){
data <- subset(id.part, pais==p)
data <- data[order(data$freqpref),]
data$ano <- as.factor(data$year)
dotchart(data$freqpref,labels=data$nompart,cex=.7,pch=19, xlim=c(0, 40), groups= data$ano,
main= paste(p, ": Porcentaje de electores que se identifican con un\n partido político, según partido y elección"),
xlab="% de electores")}

Se generan los gráficos para cada país

png("/Users/David1/Dropbox/Doctorado/Tesis/Redaccion 2015/Tablas y Graficos/Cap8_VotoIdeo/idpart_brasil.png", width = 7, height = 5, units = "in", res = 200)
graf.idp("BRASIL")
dev.off()
## pdf 
##   2
png("/Users/David1/Dropbox/Doctorado/Tesis/Redaccion 2015/Tablas y Graficos/Cap8_VotoIdeo/idpart_chile.png", width = 7, height = 5, units = "in", res = 200)
graf.idp("CHILE")
dev.off()
## pdf 
##   2
png("/Users/David1/Dropbox/Doctorado/Tesis/Redaccion 2015/Tablas y Graficos/Cap8_VotoIdeo/idpart_mexico.png", width = 7, height = 5, units = "in", res = 200)
graf.idp("MEXICO")
dev.off()
## pdf 
##   2
png("/Users/David1/Dropbox/Doctorado/Tesis/Redaccion 2015/Tablas y Graficos/Cap8_VotoIdeo/idpart_peru.png", width = 7, height = 5, units = "in", res = 200)
graf.idp("PERU")
dev.off()
## pdf 
##   2

PREFERENCIA POR PARTIDOS POLÍTICOS

Se genera una base de datos con la media de la preferencia (variable like) por cada partido político

library(doBy)

data <- summaryBy(like_a + like_b + like_c + like_d + like_e + like_f + like_g + like_h + like_i ~ pais + year, data = cses,
          FUN = function(x){c(m = mean(x, na.rm=T))})

library(reshape)
data2 <- melt(data, id=c("pais", "year"))
data3 <- data2[data2$value != "NaN", ]
data4 <- data3[order(data3$pais, data3$year),]

partido <- c("CONCERT", "APCH","PC","UDI","PDC","PPD","RN","PS","PC","UDI","RN","PDC","PPD",
"PS","PC","PRI","PAN","PRD","PVEM","PT","PCARD","PAN","PRI","PRD","PT","PVEM","PARM","PAN",
"PRI","PRD","PVEM","PT","Convergencia","PAN","PRD","PRI","PVEM","PT","Convergencia","PANAL",
"PSD","PRI","PAN","PRD","PVEM","PT","PANAL","Convergencia","PSD","P2000","PP","FIM","SP",
"PAP","UN","PP","PAP","UN","FIM","SOLPOP","RENAC","UPP","PAP","UN","AF","FDC","RN","PP",
"GP","F2011","APGC","PP","SN","PAP","PT","PSDB","PFL","PMDB","PDT","PTB","PMDB","PT",
"PSDB","PFL","PDT","PTB","PT","PMDB","PSDB","DEM","PDT","PTB")

data4$partido <- partido

Función para realizar los gráficos

graf.like <- function(p){
data <- subset(data4, pais==p)
data <- data[order(data$value),]
data$ano <- as.factor(data$year)
dotchart(data$value,labels=data$partido,cex=.7,pch=19, xlim=c(0, 10), groups= data$ano,
main=paste(p, ": Grado de preferencia por los partidos políticos\n según elección"),
xlab="0 = Nada; 10 = Mucho")}

Se generan los gráficos por país

graf.like("BRASIL")

graf.like("PERU")

graf.like("CHILE")

graf.like("MEXICO")