library(readxl)
DSRF <- read_excel("D:/DSRF.xlsx")
summary(DSRF)
## Month Comingled Recycling Cardboard
## Min. :2016-12-01 00:00:00 Min. : 0.000 Min. : 0.000
## 1st Qu.:2017-07-01 00:00:00 1st Qu.: 1.040 1st Qu.: 5.390
## Median :2018-02-01 00:00:00 Median : 8.930 Median : 8.250
## Mean :2018-01-30 15:43:26 Mean : 7.084 Mean : 6.565
## 3rd Qu.:2018-09-01 00:00:00 3rd Qu.:10.280 3rd Qu.: 9.000
## Max. :2019-04-01 00:00:00 Max. :11.520 Max. :10.750
##
## Organics In Organics Out (Dehydrator) Orca (trial) Polystyrene
## Min. : 0.00 Min. :0.000 Min. : 0.000 Min. :0.0000
## 1st Qu.: 9.89 1st Qu.:1.180 1st Qu.: 0.000 1st Qu.:0.1125
## Median :11.30 Median :5.390 Median : 4.580 Median :0.1450
## Mean :11.64 Mean :4.716 Mean : 5.174 Mean :0.1269
## 3rd Qu.:17.29 3rd Qu.:7.790 3rd Qu.: 9.280 3rd Qu.:0.1700
## Max. :25.80 Max. :9.560 Max. :16.240 Max. :0.2300
## NA's :3
## Cardboard Waxed Soft Plastics
## Min. :0.0000 Min. :0.00000
## 1st Qu.:0.3100 1st Qu.:0.00000
## Median :0.3950 Median :0.00000
## Mean :0.3428 Mean :0.01444
## 3rd Qu.:0.4250 3rd Qu.:0.01500
## Max. :0.5000 Max. :0.10000
## NA's :11 NA's :11
CR <- DSRF$`Comingled Recycling`
CR[CR == 0] <- mean(CR)
CardBoard <- DSRF$Cardboard
CardBoard[CardBoard == 0] <- mean(CardBoard)
OrganicIN <- DSRF$`Organics In`
OrganicIN[OrganicIN == 0] <- mean(OrganicIN)
OrganicOUT <- DSRF$`Organics Out (Dehydrator)`
OrganicOUT[OrganicOUT == 0] <- mean(OrganicOUT)
Orca <- DSRF$`Orca (trial)`
Orca[Orca == 0] <- mean(Orca)
Polyst <- DSRF$Polystyrene
Poly <- na.omit(Polyst)
Poly[Poly == 0] <- mean(Poly)
CradWaxed <- DSRF$`Cardboard Waxed`
CardWax <- na.omit(CradWaxed)
CardWax[CardWax == 0] <- mean(CardWax)
SoftPlastics <- DSRF$`Soft Plastics`
Softplastics <- na.omit(SoftPlastics)
Softplastics[Softplastics == 0] <- mean(Softplastics)
CR_ts=ts(CR,start=c(2016,12), frequency=12)
CardBoard_ts = ts(CardBoard,start=c(2016,12), frequency=12)
OrganicIN_ts = ts(OrganicIN,start=c(2016,12), frequency=12)
OrganicOUT_ts = ts(OrganicOUT,start=c(2016,12), frequency=12)
Orca_ts = ts(Orca,start=c(2016,12), frequency=12)
Poly_ts = ts(Poly,start=c(2017,2), frequency=12)
CardWax_ts = ts(CardWax,start=c(2017,10), frequency=12)
Softplastics_ts = ts(Softplastics,start=c(2017,10), frequency=12)
#Plotting Time Sries
library(TSstudio)
CR_PLOT <- ts_plot(CR_ts,
title = "Commingled Recycling",
Xtitle = "Time",
Ytitle = "Tonnage",
slider = TRUE)
CardBoard_PLOT <- ts_plot(CardBoard_ts,
title = "CardBoard",
Xtitle = "Time",
Ytitle = "Tonnage",
slider = TRUE)
OrganicIN_PLOT <- ts_plot(OrganicIN_ts,
title = "Organics IN",
Xtitle = "Time",
Ytitle = "Tonnage",
slider = TRUE)
OrganicOUT_PLOT <- ts_plot(OrganicOUT_ts,
title = "Organics Out (Dehydrator)",
Xtitle = "Time",
Ytitle = "Tonnage",
slider = TRUE)
Orca_PLOT <- ts_plot(Orca_ts,
title = "Orca (Trial)",
Xtitle = "Time",
Ytitle = "Tonnage",
slider = TRUE)
Poly_PLOT <- ts_plot(Poly_ts,
title = "Polystyrene",
Xtitle = "Time",
Ytitle = "Tonnage",
slider = TRUE)
CardWax_PLOT <- ts_plot(CardWax_ts,
title = "Cardboard Waxed",
Xtitle = "Time",
Ytitle = "Tonnage",
slider = TRUE)
Softplastics_PLOT <- ts_plot(Softplastics_ts,
title = "Soft Plastics",
Xtitle = "Time",
Ytitle = "Tonnage",
slider = TRUE)
CR_PLOT
CardBoard_PLOT
OrganicIN_PLOT
OrganicOUT_PLOT
Orca_PLOT
Poly_PLOT
CardWax_PLOT
Softplastics_PLOT
#Scatter Plot and correlation
plot(y=CR_ts, x=zlag(CR_ts), xlab='Previous Year',ylab='Comingled Recycling', main="Scatter Plot of Comingled Recycling")
y=CR_ts
x=zlag(CR_ts)
index= 2:length(x)
cor(y[index], x[index])
## [1] 0.03066704
ses.CR <- ses(CR_ts, alpha = .2, h = 12)
autoplot(ses.CR, main = 'Forecast from Simple Exponential Smoothing of Commingled Recycling')
ses.CR
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## May 2019 9.535012 6.727129 12.34290 5.240725 13.82930
## Jun 2019 9.535012 6.671521 12.39850 5.155681 13.91434
## Jul 2019 9.535012 6.616974 12.45305 5.072258 13.99777
## Aug 2019 9.535012 6.563427 12.50660 4.990366 14.07966
## Sep 2019 9.535012 6.510829 12.55919 4.909923 14.16010
## Oct 2019 9.535012 6.459130 12.61089 4.830856 14.23917
## Nov 2019 9.535012 6.408285 12.66174 4.753096 14.31693
## Dec 2019 9.535012 6.358254 12.71177 4.676581 14.39344
## Jan 2020 9.535012 6.308999 12.76102 4.601252 14.46877
## Feb 2020 9.535012 6.260485 12.80954 4.527056 14.54297
## Mar 2020 9.535012 6.212679 12.85734 4.453943 14.61608
## Apr 2020 9.535012 6.165552 12.90447 4.381867 14.68816
#Scatter Plot and correlation
plot(y=CardBoard_ts, x=zlag(CardBoard_ts), xlab='Previous Year',ylab='Cardboard', main="Scatter Plot of Cardboard")
y=CardBoard_ts
x=zlag(CardBoard_ts)
index= 2:length(x)
cor(y[index], x[index])
## [1] -0.1817916
ses.CB <- ses(CardBoard_ts, alpha = .2, h = 12)
autoplot(ses.CB, main = 'Forecast from Simple Exponential Smoothing of Cardboard')
ses.CB
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## May 2019 7.695792 5.271387 10.12020 3.987985 11.40360
## Jun 2019 7.695792 5.223375 10.16821 3.914556 11.47703
## Jul 2019 7.695792 5.176277 10.21531 3.842526 11.54906
## Aug 2019 7.695792 5.130043 10.26154 3.771818 11.61977
## Sep 2019 7.695792 5.084628 10.30696 3.702362 11.68922
## Oct 2019 7.695792 5.039990 10.35159 3.634093 11.75749
## Nov 2019 7.695792 4.996089 10.39550 3.566953 11.82463
## Dec 2019 7.695792 4.952891 10.43869 3.500887 11.89070
## Jan 2020 7.695792 4.910363 10.48122 3.435846 11.95574
## Feb 2020 7.695792 4.868475 10.52311 3.371783 12.01980
## Mar 2020 7.695792 4.827198 10.56439 3.308656 12.08293
## Apr 2020 7.695792 4.786506 10.60508 3.246424 12.14516
#Scatter Plot and correlation
plot(y=OrganicIN_ts, x=zlag(OrganicIN_ts), xlab='Previous Year',ylab='Organic IN', main="Scatter Plot of Organic In")
y=OrganicIN_ts
x=zlag(OrganicIN_ts)
index= 2:length(x)
cor(y[index], x[index])
## [1] 0.5576596
holt.OrganicIN <- holt(OrganicIN_ts,
h = 12)
autoplot(holt.OrganicIN, main = 'Forecast from Holts Method of Organics IN')
holt.OrganicIN
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## May 2019 18.15189 13.68956 22.61422 11.32735 24.97644
## Jun 2019 18.40494 13.76140 23.04848 11.30326 25.50662
## Jul 2019 18.65799 13.83994 23.47605 11.28942 26.02657
## Aug 2019 18.91104 13.92446 23.89763 11.28473 26.53736
## Sep 2019 19.16409 14.01439 24.31380 11.28830 27.03989
## Oct 2019 19.41715 14.10921 24.72508 11.29937 27.53493
## Nov 2019 19.67020 14.20852 25.13187 11.31728 28.02311
## Dec 2019 19.92325 14.31193 25.53456 11.34148 28.50502
## Jan 2020 20.17630 14.41913 25.93346 11.37147 28.98112
## Feb 2020 20.42935 14.52984 26.32886 11.40683 29.45187
## Mar 2020 20.68240 14.64381 26.72099 11.44717 29.91763
## Apr 2020 20.93545 14.76082 27.11009 11.49216 30.37874
#Scatter Plot and correlation
plot(y=OrganicOUT_ts, x=zlag(OrganicOUT_ts), xlab='Previous Year',ylab='Organic Out', main="Scatter Plot of Organic Out")
y=OrganicOUT_ts
x=zlag(OrganicOUT_ts)
index= 2:length(x)
cor(y[index], x[index])
## [1] 0.6485924
holt.OrganicOUT <- holt(OrganicOUT_ts,
h = 12)
autoplot(holt.OrganicOUT, main = 'Forecast from Holts Method of Organics OUT')
holt.OrganicOUT
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## May 2019 6.5847888 4.736243 8.433334 3.75768257 9.411895
## Jun 2019 6.0670240 4.176842 7.957206 3.17623971 8.957808
## Jul 2019 5.5492593 3.568592 7.529927 2.52008957 8.578429
## Aug 2019 5.0314946 2.899425 7.163564 1.77077571 8.292213
## Sep 2019 4.5137298 2.164549 6.862911 0.92096754 8.106492
## Oct 2019 3.9959651 1.365438 6.626492 -0.02707876 8.019009
## Nov 2019 3.4782004 0.507238 6.449163 -1.06549446 8.021895
## Dec 2019 2.9604356 -0.403687 6.324558 -2.18454595 8.105417
## Jan 2020 2.4426709 -1.361224 6.246566 -3.37488465 8.260226
## Feb 2020 1.9249062 -2.360108 6.209920 -4.62845682 8.478269
## Mar 2020 1.4071415 -3.396017 6.210300 -5.93865526 8.752938
## Apr 2020 0.8893767 -4.465473 6.244226 -7.30015887 9.078912
#Scatter Plot and correlation
plot(y=Orca_ts, x=zlag(Orca_ts), xlab='Previous Year',ylab='Orca', main="Scatter Plot of Orca")
y=Orca_ts
x=zlag(Orca_ts)
index= 2:length(x)
cor(y[index], x[index])
## [1] 0.5400223
holt.orca <- holt(Orca_ts,
h = 12)
autoplot(holt.orca, main = 'Forecast from Holts Method of Orca')
holt.orca
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## May 2019 9.893987 6.126386 13.66159 4.131938 15.65604
## Jun 2019 10.021597 6.040520 14.00267 3.933065 16.11013
## Jul 2019 10.149207 5.965417 14.33300 3.750652 16.54776
## Aug 2019 10.276817 5.899581 14.65405 3.582412 16.97122
## Sep 2019 10.404427 5.841833 14.96702 3.426541 17.38231
## Oct 2019 10.532037 5.791225 15.27285 3.281590 17.78248
## Nov 2019 10.659648 5.746979 15.57232 3.146370 18.17293
## Dec 2019 10.787258 5.708450 15.86607 3.019891 18.55462
## Jan 2020 10.914868 5.675093 16.15464 2.901324 18.92841
## Feb 2020 11.042478 5.646446 16.43851 2.789959 19.29500
## Mar 2020 11.170088 5.622111 16.71807 2.685189 19.65499
## Apr 2020 11.297698 5.601742 16.99365 2.586485 20.00891
#Scatter Plot and correlation
plot(y=Poly_ts, x=zlag(Poly_ts), xlab='Previous Year',ylab='Polystyrene', main="Scatter Plot of Polystyrene")
y=Poly_ts
x=zlag(Poly_ts)
index= 2:length(x)
cor(y[index], x[index])
## [1] 0.11161
ses.poly <- ses(Poly_ts, alpha = .2, h = 12)
autoplot(ses.poly, main = 'Forecasts Simple Exponential Smoothing of Polystyrene')
ses.poly
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## Apr 2019 0.1443205 0.10519008 0.1834509 0.08447569 0.2041653
## May 2019 0.1443205 0.10441515 0.1842258 0.08329053 0.2053504
## Jun 2019 0.1443205 0.10365498 0.1849860 0.08212795 0.2065130
## Jul 2019 0.1443205 0.10290876 0.1857322 0.08098671 0.2076543
## Aug 2019 0.1443205 0.10217575 0.1864652 0.07986567 0.2087753
## Sep 2019 0.1443205 0.10145527 0.1871857 0.07876380 0.2098772
## Oct 2019 0.1443205 0.10074671 0.1878943 0.07768015 0.2109608
## Nov 2019 0.1443205 0.10004949 0.1885915 0.07661383 0.2120271
## Dec 2019 0.1443205 0.09936307 0.1892779 0.07556405 0.2130769
## Jan 2020 0.1443205 0.09868698 0.1899540 0.07453007 0.2141109
## Feb 2020 0.1443205 0.09802077 0.1906202 0.07351117 0.2151298
## Mar 2020 0.1443205 0.09736400 0.1912770 0.07250674 0.2161342
#Scatter Plot and correlation
plot(y=CardWax_ts, x=zlag(CardWax_ts), xlab='Previous Year',ylab='Cardard Waxed', main="Scatter Plot of Cardard Waxed")
y=CardWax_ts
x=zlag(CardWax_ts)
index= 2:length(x)
cor(y[index], x[index])
## [1] 0.1144103
ses.CW <- ses(CardWax_ts, alpha = .2, h = 12)
autoplot(ses.CW, main = 'Forecasts Simple Exponential Smoothing of Cardboard Waxed')
ses.CW
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## Apr 2019 0.3887413 0.3012432 0.4762394 0.2549245 0.5225581
## May 2019 0.3887413 0.2995104 0.4779722 0.2522744 0.5252082
## Jun 2019 0.3887413 0.2978106 0.4796720 0.2496748 0.5278078
## Jul 2019 0.3887413 0.2961420 0.4813406 0.2471229 0.5303597
## Aug 2019 0.3887413 0.2945030 0.4829797 0.2446162 0.5328664
## Sep 2019 0.3887413 0.2928919 0.4845907 0.2421523 0.5353303
## Oct 2019 0.3887413 0.2913075 0.4861751 0.2397292 0.5377534
## Nov 2019 0.3887413 0.2897485 0.4877341 0.2373449 0.5401378
## Dec 2019 0.3887413 0.2882136 0.4892690 0.2349975 0.5424851
## Jan 2020 0.3887413 0.2867019 0.4907808 0.2326854 0.5447972
## Feb 2020 0.3887413 0.2852122 0.4922705 0.2304071 0.5470755
## Mar 2020 0.3887413 0.2837436 0.4937391 0.2281611 0.5493215
#Scatter Plot and correlation
plot(y=Softplastics_ts, x=zlag(Softplastics_ts), xlab='Previous Year',ylab='Soft Plastics', main="Scatter Plot of Soft Plastics")
y=Softplastics_ts
x=zlag(Softplastics_ts)
index= 2:length(x)
cor(y[index], x[index])
## [1] 0.3259405
ses.SP <- ses(Softplastics_ts, alpha = .2, h = 12)
autoplot(ses.SP, main = 'Forecast from Simple Exponential of Smoothing Soft Plastics')
ses.SP
## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
## Apr 2019 0.01638936 -0.01312314 0.04590187 -0.02874612 0.06152485
## May 2019 0.01638936 -0.01370761 0.04648633 -0.02963998 0.06241871
## Jun 2019 0.01638936 -0.01428093 0.04705966 -0.03051681 0.06329554
## Jul 2019 0.01638936 -0.01484374 0.04762247 -0.03137754 0.06415627
## Aug 2019 0.01638936 -0.01539658 0.04817531 -0.03222304 0.06500177
## Sep 2019 0.01638936 -0.01593997 0.04871870 -0.03305408 0.06583281
## Oct 2019 0.01638936 -0.01647437 0.04925310 -0.03387138 0.06665011
## Nov 2019 0.01638936 -0.01700023 0.04977896 -0.03467561 0.06745434
## Dec 2019 0.01638936 -0.01751792 0.05029665 -0.03546736 0.06824609
## Jan 2020 0.01638936 -0.01802784 0.05080657 -0.03624720 0.06902593
## Feb 2020 0.01638936 -0.01853030 0.05130903 -0.03701566 0.06979439
## Mar 2020 0.01638936 -0.01902564 0.05180437 -0.03777322 0.07055195