Análisis de riqueza de especies a partir de una base de datos hipotética

Base de Datos

■■■
datos <- read.delim("D:/Downloads/UNA/II Ciclo 2021/Tecnicas de Muestreo/R/Ejrecicio_RiquezaEspecies/Diversidad_aves.txt")

View(datos)

head(datos)     # Muestra las primeras 6 filas
##       Zona Plot Ada Albert Alice Anna Annie Arthur Bert Bertha Charlie Clara
## 1 Forest_A   P1   4      0     0    0     0      0    0      0       0     0
## 2 Forest_A   P1   0      0     0    4     0      0    0      0       0     0
## 3 Forest_A   P1   0      0     0    1     0      0    0      0       0     0
## 4 Forest_A   P1   0      0     0    0     0      0    0      4       0     0
## 5 Forest_A   P1   5      0     0    5     0      0    0      3       0     2
## 6 Forest_A   P1   0      0     0    0     0      0    0      5       0     2
##   Clarence Cora Daisy Daniel David Edith Elizabeth Elmer Emma Ernest Ethel Eva
## 1        0    0     0      0     0     0         0     0    0      0     0   0
## 2        0    0     2      0     0     0         0     0    0      0     0   0
## 3        0    0     0      0     0     0         0     0    0      0     0   0
## 4        0    0     0      0     0     0         0     0    0      0     0   0
## 5        0    0     0      0     0     0         0     0    0      0     0   0
## 6        5    0     0      0     0     0         0     0    0      0     0   0
##   Fannie Florence Frances Francis Frank Frederick Gertrude Hattie Henry Herbert
## 1      0        0       0       0     0         0        0      0     0       0
## 2      0        0       0       0     0         0        0      0     0       0
## 3      0        0       0       0     0         0        0      0     0       0
## 4      0        0       0       0     0         0        0      0     0       0
## 5      0        0       0       0     0         0        0      0     0       0
## 6      0       11       0       0     0         0        0      0     3      12
##   Howard Ida Jacob James Jennie Jesse Jim Joe Josephine Julia Lee Lena Lewis
## 1      0   0     0     0      0     0   0   0         0     0   0    0     0
## 2      0   0     0     0      0     0   0   0         0     0   0    0     0
## 3      0   0     0     0      0     0   0   0         0     0   0    0     0
## 4      0   0     0     0      0     0   0   0         0     0   0    0     0
## 5      0   0     0     0      0     0   0   0         0     0   0    0     0
## 6      5   0     0     0      0     0   0   0         0     0   0    0     0
##   Lillian Lillie Louise Lucy Lula Mabel Maggie Margaret Martha Martin Mary
## 1       0      0      0    0    0     0      0        0      0      0    0
## 2       0      0      0    0    0     0      0        0      0      0    0
## 3       0      0      0    0    0     0      0        0      0      0    0
## 4       0      0      0    0    0     0      0        0      0      0    0
## 5       0      0      0    0    0     0      0        0      0      0    0
## 6       0      0      0    0    0     0      0        0      0      0    0
##   Mattie Maude Myrtle Oscar Pearl Rose Roy Samuel Sarah Tom Will William
## 1      0     0      0     0     0    0   0      0     0   0    0       0
## 2      0     0      0     0     0    0   0      0     0   0    0       0
## 3      0     0      0     0     0    0   0      0     0   0    0       0
## 4      0     0      0     0     0    0   0      0     0   0    0       0
## 5      0     0      0     0     0    0   0      0     0   0    0       0
## 6      0     0      0     0     0    0   0      0     0   0    0       0
tail(datos)     # Muestra las últimas 6 filas
##         Zona Plot Ada Albert Alice Anna Annie Arthur Bert Bertha Charlie Clara
## 190 Rustic_B  P14   0      0     0    0     0      0    0      0       0     0
## 191 Rustic_B  P14   0      0     0    0     0      0    0      0       0     0
## 192 Rustic_B  P14   0      0     0    0     0      0    0      0       0     0
## 193 Rustic_B  P14   0      0     0    0     0      0    0      0       0     0
## 194 Rustic_B  P14   0      0     0    0     0      0    0      0       0     0
## 195 Rustic_B  P14   0      0     0    0     0      0    0      0       0     0
##     Clarence Cora Daisy Daniel David Edith Elizabeth Elmer Emma Ernest Ethel
## 190        0    0     0      0     0     0         0     0    0      0     0
## 191        0    0     0      0     0     0         0     0    0      0     0
## 192        0    0     0      0     0     0         0     0    0      0     0
## 193        0    0     0      0     0     0         0     0    0      0     0
## 194        0    0     0      0     0     0         0     0    0      0     0
## 195        0    0     0      0     0     0         0     0    0      0     0
##     Eva Fannie Florence Frances Francis Frank Frederick Gertrude Hattie Henry
## 190   0      0        0       0       0     0         0        0      0     0
## 191   0      0        0       0       0     0         0        0      0     0
## 192   0      0        0       0       0     0         0        0      0     0
## 193   0      0        0       0       0     0         0        0      0     0
## 194   0      0        0       0       0     0         0        0      0     0
## 195   0      0        0       0       0     0         0        0      0     0
##     Herbert Howard Ida Jacob James Jennie Jesse Jim Joe Josephine Julia Lee
## 190       0      0   0     0     0      0     0   0   0         0     0   0
## 191       0      0   0     0     0      0     0   0   0         0     0   0
## 192       0      0   0     0     0      3     0   0   0         0     0   0
## 193       0      0   0     0     0      0     0   0   0         3     0   0
## 194       0      0   0     0     0      0     0   0   0         0     0   2
## 195       0      0   0     0     0      0     0   0   0         0     0   0
##     Lena Lewis Lillian Lillie Louise Lucy Lula Mabel Maggie Margaret Martha
## 190    0     0       0      0      0    0    0     0      0        0      0
## 191    0     0       0      0      0    0    0     0      0        0      0
## 192    0     0       0      0      0    0    0     0      0        0      0
## 193    0     0       0      0      0    0    0     0      0        0      0
## 194    0     0       0      0      0    0    0     0      0        0      0
## 195    0     0       0      0      0    0    0     0      0        0      0
##     Martin Mary Mattie Maude Myrtle Oscar Pearl Rose Roy Samuel Sarah Tom Will
## 190      0    0      0     0      0     0     0    0   0      0     0   6    0
## 191      0    0      0     0      0     0     0    0   0      0     2   0    0
## 192      0    0      0     0      0     0     0    0   0      0     0   0    0
## 193      0    0      0     0      0     0     0    0   0      0     0   0    0
## 194      0    0      0     0      0     0     0    0   0      0     0   0    0
## 195      0    0      0     0      0     0     0    0   0      0     2   0    0
##     William
## 190       0
## 191       0
## 192       0
## 193       0
## 194       0
## 195       0
nrow(datos)     # Número de filas (sitios)
## [1] 195
ncol(datos)     # Número de columnas (especies)
## [1] 70
dim(datos)      # Dimensiones de la base de datos (filas y columnas)
## [1] 195  70
colnames(datos) # Nombres de las columnas (especies)
##  [1] "Zona"      "Plot"      "Ada"       "Albert"    "Alice"     "Anna"     
##  [7] "Annie"     "Arthur"    "Bert"      "Bertha"    "Charlie"   "Clara"    
## [13] "Clarence"  "Cora"      "Daisy"     "Daniel"    "David"     "Edith"    
## [19] "Elizabeth" "Elmer"     "Emma"      "Ernest"    "Ethel"     "Eva"      
## [25] "Fannie"    "Florence"  "Frances"   "Francis"   "Frank"     "Frederick"
## [31] "Gertrude"  "Hattie"    "Henry"     "Herbert"   "Howard"    "Ida"      
## [37] "Jacob"     "James"     "Jennie"    "Jesse"     "Jim"       "Joe"      
## [43] "Josephine" "Julia"     "Lee"       "Lena"      "Lewis"     "Lillian"  
## [49] "Lillie"    "Louise"    "Lucy"      "Lula"      "Mabel"     "Maggie"   
## [55] "Margaret"  "Martha"    "Martin"    "Mary"      "Mattie"    "Maude"    
## [61] "Myrtle"    "Oscar"     "Pearl"     "Rose"      "Roy"       "Samuel"   
## [67] "Sarah"     "Tom"       "Will"      "William"
rownames(datos) # Nombres de las filas (SITIOS)
##   [1] "1"   "2"   "3"   "4"   "5"   "6"   "7"   "8"   "9"   "10"  "11"  "12" 
##  [13] "13"  "14"  "15"  "16"  "17"  "18"  "19"  "20"  "21"  "22"  "23"  "24" 
##  [25] "25"  "26"  "27"  "28"  "29"  "30"  "31"  "32"  "33"  "34"  "35"  "36" 
##  [37] "37"  "38"  "39"  "40"  "41"  "42"  "43"  "44"  "45"  "46"  "47"  "48" 
##  [49] "49"  "50"  "51"  "52"  "53"  "54"  "55"  "56"  "57"  "58"  "59"  "60" 
##  [61] "61"  "62"  "63"  "64"  "65"  "66"  "67"  "68"  "69"  "70"  "71"  "72" 
##  [73] "73"  "74"  "75"  "76"  "77"  "78"  "79"  "80"  "81"  "82"  "83"  "84" 
##  [85] "85"  "86"  "87"  "88"  "89"  "90"  "91"  "92"  "93"  "94"  "95"  "96" 
##  [97] "97"  "98"  "99"  "100" "101" "102" "103" "104" "105" "106" "107" "108"
## [109] "109" "110" "111" "112" "113" "114" "115" "116" "117" "118" "119" "120"
## [121] "121" "122" "123" "124" "125" "126" "127" "128" "129" "130" "131" "132"
## [133] "133" "134" "135" "136" "137" "138" "139" "140" "141" "142" "143" "144"
## [145] "145" "146" "147" "148" "149" "150" "151" "152" "153" "154" "155" "156"
## [157] "157" "158" "159" "160" "161" "162" "163" "164" "165" "166" "167" "168"
## [169] "169" "170" "171" "172" "173" "174" "175" "176" "177" "178" "179" "180"
## [181] "181" "182" "183" "184" "185" "186" "187" "188" "189" "190" "191" "192"
## [193] "193" "194" "195"

Separación de datos de aves y sitios

■■■
aves <- datos [,- c(1,2)]
head(aves)
##   Ada Albert Alice Anna Annie Arthur Bert Bertha Charlie Clara Clarence Cora
## 1   4      0     0    0     0      0    0      0       0     0        0    0
## 2   0      0     0    4     0      0    0      0       0     0        0    0
## 3   0      0     0    1     0      0    0      0       0     0        0    0
## 4   0      0     0    0     0      0    0      4       0     0        0    0
## 5   5      0     0    5     0      0    0      3       0     2        0    0
## 6   0      0     0    0     0      0    0      5       0     2        5    0
##   Daisy Daniel David Edith Elizabeth Elmer Emma Ernest Ethel Eva Fannie
## 1     0      0     0     0         0     0    0      0     0   0      0
## 2     2      0     0     0         0     0    0      0     0   0      0
## 3     0      0     0     0         0     0    0      0     0   0      0
## 4     0      0     0     0         0     0    0      0     0   0      0
## 5     0      0     0     0         0     0    0      0     0   0      0
## 6     0      0     0     0         0     0    0      0     0   0      0
##   Florence Frances Francis Frank Frederick Gertrude Hattie Henry Herbert Howard
## 1        0       0       0     0         0        0      0     0       0      0
## 2        0       0       0     0         0        0      0     0       0      0
## 3        0       0       0     0         0        0      0     0       0      0
## 4        0       0       0     0         0        0      0     0       0      0
## 5        0       0       0     0         0        0      0     0       0      0
## 6       11       0       0     0         0        0      0     3      12      5
##   Ida Jacob James Jennie Jesse Jim Joe Josephine Julia Lee Lena Lewis Lillian
## 1   0     0     0      0     0   0   0         0     0   0    0     0       0
## 2   0     0     0      0     0   0   0         0     0   0    0     0       0
## 3   0     0     0      0     0   0   0         0     0   0    0     0       0
## 4   0     0     0      0     0   0   0         0     0   0    0     0       0
## 5   0     0     0      0     0   0   0         0     0   0    0     0       0
## 6   0     0     0      0     0   0   0         0     0   0    0     0       0
##   Lillie Louise Lucy Lula Mabel Maggie Margaret Martha Martin Mary Mattie Maude
## 1      0      0    0    0     0      0        0      0      0    0      0     0
## 2      0      0    0    0     0      0        0      0      0    0      0     0
## 3      0      0    0    0     0      0        0      0      0    0      0     0
## 4      0      0    0    0     0      0        0      0      0    0      0     0
## 5      0      0    0    0     0      0        0      0      0    0      0     0
## 6      0      0    0    0     0      0        0      0      0    0      0     0
##   Myrtle Oscar Pearl Rose Roy Samuel Sarah Tom Will William
## 1      0     0     0    0   0      0     0   0    0       0
## 2      0     0     0    0   0      0     0   0    0       0
## 3      0     0     0    0   0      0     0   0    0       0
## 4      0     0     0    0   0      0     0   0    0       0
## 5      0     0     0    0   0      0     0   0    0       0
## 6      0     0     0    0   0      0     0   0    0       0
sitios    <- datos [, c(1,2)]
head(sitios)
##       Zona Plot
## 1 Forest_A   P1
## 2 Forest_A   P1
## 3 Forest_A   P1
## 4 Forest_A   P1
## 5 Forest_A   P1
## 6 Forest_A   P1

Exploración de especies de aves

■■■
range(aves)             # valores mínimos y máximos de abundacia
## [1]  0 30
apply(aves,2, range)   # valores mínimos y máximos para cada especie
##      Ada Albert Alice Anna Annie Arthur Bert Bertha Charlie Clara Clarence Cora
## [1,]   0      0     0    0     0      0    0      0       0     0        0    0
## [2,]   6      8    10    8    12      7    5      5       6     2       12    4
##      Daisy Daniel David Edith Elizabeth Elmer Emma Ernest Ethel Eva Fannie
## [1,]     0      0     0     0         0     0    0      0     0   0      0
## [2,]     3     17    15    16        15    30    2     20     9   2     24
##      Florence Frances Francis Frank Frederick Gertrude Hattie Henry Herbert
## [1,]        0       0       0     0         0        0      0     0       0
## [2,]       21       7      23    12         7       23     18     5      18
##      Howard Ida Jacob James Jennie Jesse Jim Joe Josephine Julia Lee Lena Lewis
## [1,]      0   0     0     0      0     0   0   0         0     0   0    0     0
## [2,]      5  10    10     5     25    21   5   8        25     5  11    7    19
##      Lillian Lillie Louise Lucy Lula Mabel Maggie Margaret Martha Martin Mary
## [1,]       0      0      0    0    0     0      0        0      0      0    0
## [2,]      12      4      2   22   17     4     23        7     24      8    3
##      Mattie Maude Myrtle Oscar Pearl Rose Roy Samuel Sarah Tom Will William
## [1,]      0     0      0     0     0    0   0      0     0   0    0       0
## [2,]      2     5     11    24    15   21  13      5    16  21    5      17
sum(aves == 0)         #  Número de ausencias
## [1] 12921
sum(aves == 0) / (nrow(aves) * ncol(aves)) # Proporción de ceros en la base de datos
## [1] 0.9744344

Distribución de abundancia durante el estudio

■■■
abundancia <- table(unlist(aves)) # cuenta los casos para cada clase de abundancia

barplot(abundancia, las=1, xlab = "Clase de abundancia",
ylab = "Frecuencia",col = gray(5 : 0 / 5))

Coordenadas geográficas de los sitios

■■■
coor <- read.delim("D:/Downloads/UNA/II Ciclo 2021/Tecnicas de Muestreo/R/Ejrecicio_RiquezaEspecies/coordenadas.txt")
coor
##          X       Y
## 1   679073 1125709
## 2   679063 1125699
## 3   679053 1125689
## 4   679043 1125679
## 5   679033 1125669
## 6   679023 1125659
## 7   679013 1125649
## 8   679003 1125639
## 9   678993 1125629
## 10  678983 1125619
## 11  678973 1125609
## 12  678963 1125599
## 13  678953 1125589
## 14  678943 1125579
## 15  678933 1125569
## 16  678923 1125559
## 17  678913 1125549
## 18  678903 1125539
## 19  678893 1125529
## 20  678883 1125519
## 21  678873 1125509
## 22  678863 1125499
## 23  678853 1125489
## 24  678843 1125479
## 25  678833 1125469
## 26  678823 1125459
## 27  678813 1125449
## 28  678803 1125439
## 29  678793 1125429
## 30  678783 1125419
## 31  678773 1125409
## 32  678763 1125399
## 33  678753 1125389
## 34  678743 1125379
## 35  678733 1125369
## 36  678723 1125359
## 37  678713 1125349
## 38  678703 1125339
## 39  678693 1125329
## 40  678683 1125319
## 41  678673 1125309
## 42  678663 1125299
## 43  678653 1125289
## 44  678643 1125279
## 45  678633 1125269
## 46  678623 1125259
## 47  678613 1125249
## 48  678603 1125239
## 49  678593 1125229
## 50  678583 1125219
## 51  678573 1125209
## 52  678563 1125199
## 53  678553 1125189
## 54  678543 1125179
## 55  678533 1125169
## 56  678523 1125159
## 57  678513 1125149
## 58  678503 1125139
## 59  678493 1125129
## 60  678483 1125119
## 61  678473 1125109
## 62  678463 1125099
## 63  678453 1125089
## 64  678443 1125079
## 65  678433 1125069
## 66  678423 1125059
## 67  678413 1125049
## 68  678403 1125039
## 69  678393 1125029
## 70  678383 1125019
## 71  678373 1125009
## 72  678363 1124999
## 73  678353 1124989
## 74  678343 1124979
## 75  678333 1124969
## 76  678323 1124959
## 77  678313 1124949
## 78  678303 1124939
## 79  678293 1124929
## 80  678283 1124919
## 81  678273 1124909
## 82  678263 1124899
## 83  678253 1124889
## 84  678243 1124879
## 85  678233 1124869
## 86  678223 1124859
## 87  678213 1124849
## 88  678203 1124839
## 89  678193 1124829
## 90  678183 1124819
## 91  678173 1124809
## 92  678163 1124799
## 93  678153 1124789
## 94  678143 1124779
## 95  678133 1124769
## 96  678123 1124759
## 97  678113 1124749
## 98  678103 1124739
## 99  678093 1124729
## 100 678083 1124719
## 101 678073 1124709
## 102 678063 1124699
## 103 678053 1124689
## 104 678043 1124679
## 105 678033 1124669
## 106 678023 1124659
## 107 678013 1124649
## 108 678003 1124639
## 109 677993 1124629
## 110 677983 1124619
## 111 677973 1124609
## 112 677963 1124599
## 113 677953 1124589
## 114 677943 1124579
## 115 677933 1124569
## 116 677923 1124559
## 117 677913 1124549
## 118 677903 1124539
## 119 677893 1124529
## 120 677883 1124519
## 121 677873 1124509
## 122 677863 1124499
## 123 677853 1124489
## 124 677843 1124479
## 125 677833 1124469
## 126 677823 1124459
## 127 677813 1124449
## 128 677803 1124439
## 129 677793 1124429
## 130 677783 1124419
## 131 677773 1124409
## 132 677763 1124399
## 133 677753 1124389
## 134 677743 1124379
## 135 677733 1124369
## 136 677723 1124359
## 137 677713 1124349
## 138 677703 1124339
## 139 677693 1124329
## 140 677683 1124319
## 141 677673 1124309
## 142 677663 1124299
## 143 677653 1124289
## 144 677643 1124279
## 145 677633 1124269
## 146 677623 1124259
## 147 677613 1124249
## 148 677603 1124239
## 149 677593 1124229
## 150 677583 1124219
## 151 677573 1124209
## 152 677563 1124199
## 153 677553 1124189
## 154 677543 1124179
## 155 677533 1124169
## 156 677523 1124159
## 157 677513 1124149
## 158 677503 1124139
## 159 677493 1124129
## 160 677483 1124119
## 161 677473 1124109
## 162 677463 1124099
## 163 677453 1124089
## 164 677443 1124079
## 165 677433 1124069
## 166 677423 1124059
## 167 677413 1124049
## 168 677403 1124039
## 169 677393 1124029
## 170 677383 1124019
## 171 677373 1124009
## 172 677363 1123999
## 173 677353 1123989
## 174 677343 1123979
## 175 677333 1123969
## 176 677323 1123959
## 177 677313 1123949
## 178 677303 1123939
## 179 677293 1123929
## 180 677283 1123919
## 181 677273 1123909
## 182 677263 1123899
## 183 677253 1123889
## 184 677243 1123879
## 185 677233 1123869
## 186 677223 1123859
## 187 677213 1123849
## 188 677203 1123839
## 189 677193 1123829
## 190 677183 1123819
## 191 677173 1123809
## 192 677163 1123799
## 193 677153 1123789
## 194 677143 1123779
## 195 677133 1123769
dev.new() # abre una nueva ventana para visualización

par(mfrow = c(2,2)) # mapa de coordenadas para cuatro especies

plot(coor,
     asp = 1,
     cex.axis= 0.8,
     col= "red",
     cex= aves$Ada,
     main = "Ada",
     xlab = "x coordinate (km)", ylab = "y coordinate (km)")

plot(coor,
     asp = 1,
     cex.axis= 0.8,
     col= "red",
     cex= aves$Anna,
     main = "Anna",
     xlab = "x coordinate (km)", ylab = "y coordinate (km)")

plot(coor,
     asp = 1,
     cex.axis= 0.8,
     col= "red",
     cex= aves$Cora,
     main = "Cora",
     xlab = "x coordinate (km)", ylab = "y coordinate (km)")

plot(coor,
     asp = 1,
     cex.axis= 0.8,
     col= "red",
     cex= aves$Joe,
     main = "Joe",
     xlab = "x coordinate (km)", ylab = "y coordinate (km)")

Se sugiere que Cora y Ada corresponden a especies especialistas, ya que presentan una distribución espacial más restringida que las especies Joe y Ana. La distribución espacial de estas dos últimas presentan un rango más amplio con respecto a las coordenadas.

Cálculo del número de sitios de incidencia de cada especie

■■■
aves.presencia <- apply(aves > 0, 2, sum)
sort(aves.presencia)   # Ordena los resultados en orden creciente
##    Daniel      Emma       Eva   Frances Frederick  Gertrude    Howard     James 
##         1         1         1         1         1         1         1         1 
##     Jesse       Jim   Lillian     David     Elmer    Fannie   Herbert      Lena 
##         1         1         1         2         2         2         2         2 
##    Louise    Martin      Mary    Samuel   William Elizabeth     Ethel     Frank 
##         2         2         2         2         2         3         3         3 
##    Maggie    Mattie    Myrtle      Will    Albert    Arthur     Clara      Cora 
##         3         3         3         3         4         4         4         4 
##     Daisy    Ernest    Jennie     Julia     Oscar  Florence     Lewis       Tom 
##         4         4         4         4         4         5         5         5 
##   Francis    Hattie     Henry       Ida     Jacob     Mabel  Margaret    Martha 
##         6         6         6         6         6         6         6         6 
##      Rose       Roy       Ada       Lee    Lillie      Lula     Maude     Sarah 
##         6         6         7         7         7         7         7         7 
##   Charlie       Joe     Pearl     Annie      Bert     Edith      Lucy      Anna 
##         8         8         8         9         9         9        10        11 
## Josephine     Alice    Bertha  Clarence 
##        11        12        13        26
aves.frecuencia <- 100 * aves.presencia/nrow(aves)  # Calcula el porcentaje de frecuencias
round(sort(aves.frecuencia), 1)     # Redondea el resultado ordenado a 1 dígito
##    Daniel      Emma       Eva   Frances Frederick  Gertrude    Howard     James 
##       0.5       0.5       0.5       0.5       0.5       0.5       0.5       0.5 
##     Jesse       Jim   Lillian     David     Elmer    Fannie   Herbert      Lena 
##       0.5       0.5       0.5       1.0       1.0       1.0       1.0       1.0 
##    Louise    Martin      Mary    Samuel   William Elizabeth     Ethel     Frank 
##       1.0       1.0       1.0       1.0       1.0       1.5       1.5       1.5 
##    Maggie    Mattie    Myrtle      Will    Albert    Arthur     Clara      Cora 
##       1.5       1.5       1.5       1.5       2.1       2.1       2.1       2.1 
##     Daisy    Ernest    Jennie     Julia     Oscar  Florence     Lewis       Tom 
##       2.1       2.1       2.1       2.1       2.1       2.6       2.6       2.6 
##   Francis    Hattie     Henry       Ida     Jacob     Mabel  Margaret    Martha 
##       3.1       3.1       3.1       3.1       3.1       3.1       3.1       3.1 
##      Rose       Roy       Ada       Lee    Lillie      Lula     Maude     Sarah 
##       3.1       3.1       3.6       3.6       3.6       3.6       3.6       3.6 
##   Charlie       Joe     Pearl     Annie      Bert     Edith      Lucy      Anna 
##       4.1       4.1       4.1       4.6       4.6       4.6       5.1       5.6 
## Josephine     Alice    Bertha  Clarence 
##       5.6       6.2       6.7      13.3

Histogramas

■■■
dev.new()

par(mfrow = c(1,2))


hist(aves.presencia,
     main= "Presencias de especies",
     right = FALSE, las = 1,
     xlab= "Número de presencias",
     ylab= "Número de especies",
     col= "skyblue"
)

hist(aves.frecuencia,
     main = "Frecuencia relativa de especies",
     right = FALSE,
     las = 1,
     xlab = "Frecuencia de presencias (%)",
     ylab = "Número de especies",
     breaks = seq(0, 100, by = 5),
     col = "bisque"
)

En el histograma de la izquierda se observa que en la primera columna se obtuvieron alrededor de 40 especies, sin embargo hay una presencia de baja (0-5) comparada a las demas columnas. Existe una tendencia de los datos donde a mayor número de especies, menor número de presencias. Lo mismo se ve reflejado en las frecuencias relativas.

Cálculos y estimados de riqueza de especies

■■■
library(vegan)
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.5-7
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5     v purrr   0.3.4
## v tibble  3.1.4     v dplyr   1.0.7
## v tidyr   1.1.3     v stringr 1.4.0
## v readr   2.0.1     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(BiodiversityR)
## Loading required package: tcltk
## BiodiversityR 2.13-1: Use command BiodiversityRGUI() to launch the Graphical User Interface; 
## to see changes use BiodiversityRGUI(changeLog=TRUE, backward.compatibility.messages=TRUE)
## Cálculo de la riqueza de especies durante todo el estudio

specnumber(colSums(aves))
## [1] 68
## Comparar sitios: riqueza de especies de aves

sit.presencia <- apply(aves >0, 1, sum)
sit.presencia
##   [1]  1  2  1  1  4  7  2  4  3  1  1  1  1  1  1  1  1  4 11  1  1  1  1  1  1
##  [26]  1  1  1  2  1  1  1  1  1  2  1  1  2  2  3  1  5  1  1  1  1  1  1  1  2
##  [51]  3  2  3  1  1  1  1  1  1  2  2  2  2  3  2  3  3  4  1  1  1  1  2  2  3
##  [76]  4  2  1  1  1  1  1  1  1  1  1  1  3  3  6  2  3  4  2  3  1  1  2  2  2
## [101]  6  2  1  1  1  1  0  0  0  0  1  1  1  1  0  2  2  5  4  2  1  1  1  3  2
## [126]  1  1  1  1  1  2  1  2  2  2  1  2  5  3  1  1  1  1  3  4  4  3  0  0  0
## [151]  0  0  0  0  0  0  1  1  1  3  3  2  5  0  0  2  1  2  2  1  2  3  7  6  7
## [176]  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
#-------

dev.new()

par(mfrow = c(1, 2))

Riqueza de especies vs la posición de los sitios

■■■
plot(sit.presencia,
     type = "s",
     las = 1,
     col = "gray",
     main = "Riqueza de especies",
     xlab = "Número de sitios",
     ylab = "Riqueza de especies"
)
text(sit.presencia, row.names(aves), cex = .8, col = "red") 

Coordenadas geográficas en mapa de burbujas

■■■
plot(coor,
     asp = 1,
     main = "Mapa de riqueza de especies",
     pch = 21,
     col = "white",
     bg = "brown",
     cex = 5 * sit.presencia / max(sit.presencia),
     xlab = "coordenada X (km)",
     ylab = "coordenada Y (km)"
)

La mayor riqueza de especies se encuentra en las coordenadas 679000 en x y 1125500 en y, aproximadamente.

Riqueza de especie por zona o parcela (Boxplot)

■■■
par(mfrow = c(1, 1))

boxplot(specnumber(aves)~ sitios$Zona)

En el sitio Rustico A se observa un mayor número de especies, seguido de policultura A. Se espera encontrar valores bajos en el bosque ya que a mayor riqueza menor abundancia.

Curva de acumulación general de especies

■■■
curva1 <-specaccum(aves, method = "exact", ylim(0, 70))
curva1
## Species Accumulation Curve
## Accumulation method: exact
## Call: specaccum(comm = aves, method = "exact", permutations = ylim(0,      70)) 
## 
##                                                                           
## Sites    1.00000 2.00000 3.00000 4.00000 5.00000 6.00000  7.00000  8.00000
## Richness 1.73846 3.41311 5.02761 6.58532 8.08932 9.54244 10.94728 12.30625
## sd       1.51854 2.09110 2.49569 2.81016 3.06567 3.27867  3.45916  3.61379
##                                                                        
## Sites     9.00000 10.00000 11.00000 12.00000 13.00000 14.00000 15.00000
## Richness 13.62157 14.89531 16.12936 17.32551 18.48542 19.61063 20.70258
## sd        3.74726  3.86305  3.96381  4.05164  4.12822  4.19492  4.25290
##                                                                        
## Sites    16.00000 17.00000 18.00000 19.00000 20.00000 21.00000 22.00000
## Richness 21.76264 22.79208 23.79209 24.76380 25.70829 26.62656 27.51957
## sd        4.30310  4.34636  4.38338  4.41478  4.44109  4.46279  4.48030
##                                                                        
## Sites    23.00000 24.00000 25.00000 26.00000 27.00000 28.00000 29.00000
## Richness 28.38823 29.23339 30.05588 30.85647 31.63593 32.39495 33.13422
## sd        4.49399  4.50419  4.51122  4.51533  4.51677  4.51577  4.51252
##                                                                        
## Sites    30.00000 31.00000 32.00000 33.00000 34.00000 35.00000 36.00000
## Richness 33.85439 34.55608 35.23990 35.90641 36.55618 37.18973 37.80756
## sd        4.50722  4.50002  4.49109  4.48057  4.46858  4.45524  4.44068
##                                                                        
## Sites    37.00000 38.00000 39.00000 40.00000 41.00000 42.00000 43.00000
## Richness 38.41018 38.99805 39.57163 40.13136 40.67765 41.21093 41.73157
## sd        4.42498  4.40824  4.39054  4.37198  4.35261  4.33251  4.31175
##                                                                        
## Sites    44.00000 45.00000 46.00000 47.00000 48.00000 49.00000 50.00000
## Richness 42.23996 42.73647 43.22145 43.69525 44.15818 44.61057 45.05274
## sd        4.29038  4.26845  4.24603  4.22314  4.19984  4.17617  4.15216
##                                                                        
## Sites    51.00000 52.00000 53.00000 54.00000 55.00000 56.00000 57.00000
## Richness 45.48497 45.90756 46.32078 46.72490 47.12019 47.50689 47.88526
## sd        4.12786  4.10328  4.07846  4.05344  4.02823  4.00285  3.97734
##                                                                        
## Sites    58.00000 59.00000 60.00000 61.00000 62.00000 63.00000 64.00000
## Richness 48.25552 48.61791 48.97265 49.31994 49.66001 49.99304 50.31924
## sd        3.95171  3.92598  3.90016  3.87428  3.84834  3.82237  3.79637
##                                                                        
## Sites    65.00000 66.00000 67.00000 68.00000 69.00000 70.00000 71.00000
## Richness 50.63879 50.95187 51.25867 51.55934 51.85407 52.14300 52.42630
## sd        3.77035  3.74434  3.71832  3.69233  3.66635  3.64041  3.61451
##                                                                        
## Sites    72.00000 73.00000 74.00000 75.00000 76.00000 77.00000 78.00000
## Richness 52.70411 52.97659 53.24387 53.50609 53.76338 54.01587 54.26369
## sd        3.58864  3.56283  3.53707  3.51137  3.48573  3.46016  3.43466
##                                                                        
## Sites    79.00000 80.00000 81.00000 82.00000 83.00000 84.00000 85.00000
## Richness 54.50697 54.74580 54.98032 55.21064 55.43685 55.65906 55.87737
## sd        3.40923  3.38387  3.35859  3.33338  3.30826  3.28322  3.25825
##                                                                        
## Sites    86.00000 87.00000 88.00000 89.00000 90.00000 91.00000 92.00000
## Richness 56.09189 56.30271 56.50991 56.71360 56.91385 57.11075 57.30438
## sd        3.23337  3.20857  3.18386  3.15922  3.13467  3.11020  3.08581
##                                                                        
## Sites    93.00000 94.00000 95.00000 96.00000 97.00000 98.00000 99.00000
## Richness 57.49482 57.68215 57.86644 58.04777 58.22621 58.40182 58.57467
## sd        3.06150  3.03727  3.01312  2.98905  2.96505  2.94112  2.91727
##                                                                               
## Sites    100.00000 101.00000 102.00000 103.00000 104.00000 105.00000 106.00000
## Richness  58.74482  58.91235  59.07730  59.23974  59.39973  59.55732  59.71256
## sd         2.89350   2.86979   2.84615   2.82258   2.79907   2.77563   2.75225
##                                                                               
## Sites    107.00000 108.00000 109.00000 110.00000 111.00000 112.00000 113.00000
## Richness  59.86552  60.01623  60.16475  60.31114  60.45542  60.59766  60.73789
## sd         2.72892   2.70566   2.68244   2.65929   2.63618   2.61312   2.59010
##                                                                               
## Sites    114.00000 115.00000 116.00000 117.00000 118.00000 119.00000 120.00000
## Richness  60.87616  61.01251  61.14698  61.27961  61.41044  61.53951  61.66685
## sd         2.56713   2.54420   2.52131   2.49846   2.47563   2.45284   2.43008
##                                                                               
## Sites    121.00000 122.00000 123.00000 124.00000 125.00000 126.00000 127.00000
## Richness  61.79250  61.91650  62.03886  62.15964  62.27886  62.39656  62.51275
## sd         2.40734   2.38463   2.36193   2.33926   2.31659   2.29394   2.27130
##                                                                               
## Sites    128.00000 129.00000 130.00000 131.00000 132.00000 133.00000 134.00000
## Richness  62.62748  62.74077  62.85264  62.96313  63.07227  63.18006  63.28656
## sd         2.24866   2.22602   2.20338   2.18074   2.15808   2.13542   2.11274
##                                                                               
## Sites    135.00000 136.00000 137.00000 138.00000 139.00000 140.00000 141.00000
## Richness  63.39176  63.49571  63.59842  63.69992  63.80022  63.89935  63.99734
## sd         2.09004   2.06732   2.04457   2.02179   1.99897   1.97612   1.95322
##                                                                               
## Sites    142.00000 143.00000 144.00000 145.00000 146.00000 147.00000 148.00000
## Richness  64.09419  64.18993  64.28458  64.37816  64.47069  64.56218  64.65265
## sd         1.93027   1.90727   1.88422   1.86109   1.83790   1.81464   1.79129
##                                                                               
## Sites    149.00000 150.00000 151.00000 152.00000 153.00000 154.00000 155.00000
## Richness  64.74212  64.83060  64.91812  65.00468  65.09031  65.17501  65.25881
## sd         1.76786   1.74434   1.72071   1.69698   1.67314   1.64917   1.62508
##                                                                               
## Sites    156.00000 157.00000 158.00000 159.00000 160.00000 161.00000 162.00000
## Richness  65.34171  65.42374  65.50490  65.58520  65.66467  65.74331  65.82114
## sd         1.60084   1.57646   1.55192   1.52721   1.50232   1.47724   1.45195
##                                                                               
## Sites    163.00000 164.00000 165.00000 166.00000 167.00000 168.00000 169.00000
## Richness  65.89816  65.97440  66.04986  66.12455  66.19848  66.27167  66.34413
## sd         1.42645   1.40072   1.37473   1.34848   1.32195   1.29511   1.26795
##                                                                               
## Sites    170.00000 171.00000 172.00000 173.00000 174.00000 175.00000 176.00000
## Richness  66.41586  66.48688  66.55720  66.62682  66.69575  66.76401  66.83161
## sd         1.24043   1.21254   1.18424   1.15550   1.12629   1.09656   1.06627
##                                                                              
## Sites    177.00000 178.00000 179.00000 180.00000 181.0000 182.00000 183.00000
## Richness  66.89855  66.96484  67.03049  67.09550  67.1599  67.22367  67.28684
## sd         1.03537   1.00379   0.97148   0.93834   0.9043   0.86924   0.83304
##                                                                               
## Sites    184.00000 185.00000 186.00000 187.00000 188.00000 189.00000 190.00000
## Richness  67.34941  67.41138  67.47277  67.53358  67.59382  67.65349  67.71260
## sd         0.79553   0.75652   0.71578   0.67298   0.62771   0.57940   0.52723
##                                                     
## Sites    191.00000 192.00000 193.00000 194.00000 195
## Richness  67.77116  67.82918  67.88665  67.94359  68
## sd         0.46993   0.40538   0.32931   0.23071   0
plot(curva1)

plot(curva1,
     xlab = "unidades muestreo",
     ylab = "Número de especies",
     col = "blue")
points(curva1$richness,
       pch= 19,
       col= "red")

La acumulación de especies en este caso está llegando a la asíntota, porque la curva cada vez es más plana. Por lo tanto, ya no se esperan ver más especies en los sitios de muestreo.

Curvas de acumulación de especies por sitio

■■■
curva2 <- accumcomp(aves,
                    y= sitios,
                    factor = "Zona",
                    method = "exact",
                    legend = F,
                    conditioned = T,
                    xlim = c(0, 23),
                    rainbow = T,
                    xlab = "Plots",
                    ylab = "riqueza de aves",
                    main= "Curva de acumulacion de especies por zona"
)

library(ggplot2)

curva2 <- accumcomp(aves,
                    y =sitios,
                    factor = "Zona",
                    method = "exact",
                    conditioned = F,
                    plotit = F)
curva2
## , ,  = Sites
## 
##                obs
## Zona            1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
##   Forest_A      1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
##   Forest_B      1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 NA
##   Intensive_B   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
##   Polyculture_A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
##   Polyculture_B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 NA NA NA NA NA NA
##   Rustic_A      1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
##   Rustic_B      1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
##                obs
## Zona            25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
##   Forest_A      25 26 27 28 29 30 31 32 33 34 NA NA NA NA NA
##   Forest_B      NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##   Intensive_B   25 26 NA NA NA NA NA NA NA NA NA NA NA NA NA
##   Polyculture_A 25 26 27 NA NA NA NA NA NA NA NA NA NA NA NA
##   Polyculture_B NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##   Rustic_A      25 26 27 28 NA NA NA NA NA NA NA NA NA NA NA
##   Rustic_B      25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
## 
## , ,  = Richness
## 
##                obs
## Zona                   1        2        3        4        5        6         7
##   Forest_A      1.882353 3.659537 5.338570 6.926147 8.428648 9.852143 11.202400
##   Forest_B      1.652174 3.205534 4.669113 6.051270 7.359714 8.601533  9.783233
##   Intensive_B   1.846154 3.578462 5.204231 6.730502 8.164047 9.511371 10.778712
##   Polyculture_A 1.851852 3.584046 5.205470 6.724558 8.149300 9.487254 10.745559
##   Polyculture_B 1.666667 3.189542 4.587010 5.875490 7.069561 8.182073  9.224265
##   Rustic_A      1.428571 2.806878 4.137668 5.423590 6.667196 7.870940  9.037179
##   Rustic_B      1.769231 3.468286 5.100449 6.668892 8.176680 9.626775 11.022030
##                obs
## Zona                   8        9       10       11       12       13       14
##   Forest_A      12.48489 13.70480 14.86704 15.97624 17.03676 18.05272 19.02797
##   Forest_B      10.91076 11.98952 13.02443 14.01994 14.98006 15.90838 16.80811
##   Intensive_B   11.97204 13.09706 14.15920 15.16363 16.11525 17.01870 17.87833
##   Polyculture_A 11.93095 13.04977 14.10796 15.11114 16.06451 16.97298 17.84110
##   Polyculture_B 10.20588 11.13529 12.01961 12.86479 13.67577 14.45658 15.21046
##   Rustic_A      10.16817 11.26608 12.33297 13.37080 14.38144 15.36667 16.32815
##   Rustic_B      12.36520 13.65893 14.90579 16.10822 17.26858 18.38915 19.47209
##                obs
## Zona                  15       16       17       18       19       20       21
##   Forest_A      19.96611 20.87054 21.74438 22.59056 23.41180 24.21058 24.98920
##   Forest_B      17.68213 18.53297 19.36289 20.17388 20.96770 21.74591 22.50988
##   Intensive_B   18.69824 19.48227 20.23398 20.95666 21.65333 22.32676 22.97943
##   Polyculture_A 18.67310 19.47291 20.24417 20.99023 21.71418 22.41883 23.10676
##   Polyculture_B 15.93995 16.64706 17.33333 18.00000       NA       NA       NA
##   Rustic_A      17.26746 18.18608 19.08539 19.96667 20.83110 21.67977 22.51368
##   Rustic_B      20.51950 21.53336 22.51558 23.46799 24.39234 25.29027 26.16337
##                obs
## Zona                  22       23       24       25       26       27       28
##   Forest_A      25.74976 26.49419 27.22421 27.94139 28.64713 29.34267 30.02909
##   Forest_B      23.26087 24.00000       NA       NA       NA       NA       NA
##   Intensive_B   23.61358 24.23115 24.83385 25.42308 26.00000       NA       NA
##   Polyculture_A 23.78033 24.44165 25.09265 25.73504 26.37037 27.00000       NA
##   Polyculture_B       NA       NA       NA       NA       NA       NA       NA
##   Rustic_A      23.33370 24.14064 24.93519 25.71795 26.48942 27.25000 28.00000
##   Rustic_B      27.01313 27.84099 28.64828 29.43630 30.20624 30.95923 31.69636
##                obs
## Zona                  29       30       31       32       33       34       35
##   Forest_A      30.70734 31.37823 32.04245 32.70053 33.35294 34.00000       NA
##   Forest_B            NA       NA       NA       NA       NA       NA       NA
##   Intensive_B         NA       NA       NA       NA       NA       NA       NA
##   Polyculture_A       NA       NA       NA       NA       NA       NA       NA
##   Polyculture_B       NA       NA       NA       NA       NA       NA       NA
##   Rustic_A            NA       NA       NA       NA       NA       NA       NA
##   Rustic_B      32.41861 33.12693 33.82219 34.50521 35.17674 35.83748 36.48808
##                obs
## Zona                  36       37       38 39
##   Forest_A            NA       NA       NA NA
##   Forest_B            NA       NA       NA NA
##   Intensive_B         NA       NA       NA NA
##   Polyculture_A       NA       NA       NA NA
##   Polyculture_B       NA       NA       NA NA
##   Rustic_A            NA       NA       NA NA
##   Rustic_B      37.12912 37.76113 38.38462 39
## 
## , ,  = sd
## 
##                obs
## Zona                    1         2         3         4         5         6
##   Forest_A      0.2722319 0.5146927 0.7299377 0.9203862 1.0883268 1.2359219
##   Forest_B      0.2776575 0.5142921 0.7156377 0.8868721 1.0326457 1.1571128
##   Intensive_B   0.2724841 0.5122828 0.7223129 0.9053741 1.0641489 1.2012019
##   Polyculture_A 0.2858998 0.5352865 0.7519037 0.9392401 1.1005441 1.2388367
##   Polyculture_B 0.3256191 0.5852221 0.7912828 0.9546455 1.0846258 1.1891145
##   Rustic_A      0.2074738 0.3950761 0.5645831 0.7177007 0.8560621 0.9812259
##   Rustic_B      0.2224829 0.4263271 0.6128211 0.7831967 0.9386310 1.0802479
##                obs
## Zona                   7        8        9       10       11       12       13
##   Forest_A      1.365213 1.478123 1.576463 1.661934 1.736132 1.800548 1.856576
##   Forest_B      1.263962 1.356449 1.437426 1.509377 1.574451 1.634492 1.691069
##   Intensive_B   1.318979 1.419807 1.505889 1.579306 1.642013 1.695834 1.742462
##   Polyculture_A 1.356925 1.457416 1.542726 1.615092 1.676584 1.729111 1.774428
##   Polyculture_B 1.274690 1.346739 1.409590 1.466653 1.520566 1.573339 1.626489
##   Rustic_A      1.094673 1.197805 1.291940 1.378312 1.458067 1.532263 1.601870
##   Rustic_B      1.209119 1.326267 1.432664 1.529236 1.616862 1.696379 1.768576
##                obs
## Zona                  14       15       16       17       18       19       20
##   Forest_A      1.905509 1.948545 1.986788 2.021249 2.052850 2.082420 2.110703
##   Forest_B      1.745512 1.798936 1.852269 1.906281 1.961601 2.018742 2.078121
##   Intensive_B   1.783456 1.820238 1.854092 1.886163 1.917461 1.948862 1.981113
##   Polyculture_A 1.814141 1.849715 1.882474 1.913600 1.944143 1.975017 2.007002
##   Polyculture_B 1.681164 1.738250 1.798456 1.862381 1.930566       NA       NA
##   Rustic_A      1.667769 1.730752 1.791529 1.850727 1.908896 1.966517 2.024005
##   Rustic_B      1.834204 1.893971 1.948544 1.998553 2.044588 2.087203 2.126916
##                obs
## Zona                  21       22       23       24       25       26       27
##   Forest_A      2.138358 2.165962 2.194011 2.222928 2.253066 2.284712 2.318095
##   Forest_B      2.140074 2.204872 2.272740       NA       NA       NA       NA
##   Intensive_B   2.014843 2.050570 2.088713 2.129604 2.173505 2.220619       NA
##   Polyculture_A 2.040753 2.076799 2.115554 2.157326 2.202328 2.250686 2.302459
##   Polyculture_B       NA       NA       NA       NA       NA       NA       NA
##   Rustic_A      2.081717 2.139961 2.199000 2.259063 2.320348 2.383033 2.447277
##   Rustic_B      2.164209 2.199530 2.233293 2.265882 2.297648 2.328912 2.359967
##                obs
## Zona                  28       29       30       31       32       33       34
##   Forest_A      2.353392 2.390733 2.430209 2.471879 2.515774 2.561906 2.610271
##   Forest_B            NA       NA       NA       NA       NA       NA       NA
##   Intensive_B         NA       NA       NA       NA       NA       NA       NA
##   Polyculture_A       NA       NA       NA       NA       NA       NA       NA
##   Polyculture_B       NA       NA       NA       NA       NA       NA       NA
##   Rustic_A      2.513227       NA       NA       NA       NA       NA       NA
##   Rustic_B      2.391078 2.422485 2.454401 2.487019 2.520508 2.555020 2.590686
##                obs
## Zona                  35       36       37       38      39
##   Forest_A            NA       NA       NA       NA      NA
##   Forest_B            NA       NA       NA       NA      NA
##   Intensive_B         NA       NA       NA       NA      NA
##   Polyculture_A       NA       NA       NA       NA      NA
##   Polyculture_B       NA       NA       NA       NA      NA
##   Rustic_A            NA       NA       NA       NA      NA
##   Rustic_B      2.627622 2.665932 2.705702 2.747012 2.78993
curva3 <- accumcomp.long(curva2,
                         ci= NA,
                         label.freq = 19)
curva3
##          Grouping Obs Sites  Richness        SD       LWR       UPR labelit
## 1        Rustic_B   1     1  1.769231 0.2224829  1.317091  2.221371    TRUE
## 2        Rustic_B   2     2  3.468286 0.4263271  2.601885  4.334687   FALSE
## 3        Rustic_B   3     3  5.100449 0.6128211  3.855046  6.345851   FALSE
## 4        Rustic_B   4     4  6.668892 0.7831967  5.077244  8.260539   FALSE
## 5        Rustic_B   5     5  8.176680 0.9386310  6.269153 10.084208   FALSE
## 6        Rustic_B   6     6  9.626775 1.0802479  7.431447 11.822103   FALSE
## 7        Rustic_B   7     7 11.022030 1.2091192  8.564804 13.479256   FALSE
## 8        Rustic_B   8     8 12.365199 1.3262668  9.669901 15.060498   FALSE
## 9        Rustic_B   9     9 13.658934 1.4326637 10.747411 16.570457   FALSE
## 10       Rustic_B  10    10 14.905788 1.5292356 11.798008 18.013569   FALSE
## 11       Rustic_B  11    11 16.108218 1.6168623 12.822358 19.394077   FALSE
## 12       Rustic_B  12    12 17.268582 1.6963786 13.821126 20.716038   FALSE
## 13       Rustic_B  13    13 18.389149 1.7685762 14.794969 21.983328   FALSE
## 14       Rustic_B  14    14 19.472092 1.8342043 15.744540 23.199643   FALSE
## 15       Rustic_B  15    15 20.519495 1.8939709 16.670483 24.368507   FALSE
## 16       Rustic_B  16    16 21.533355 1.9485442 17.573437 25.493273   FALSE
## 17       Rustic_B  17    17 22.515580 1.9985529 18.454032 26.577129   FALSE
## 18       Rustic_B  18    18 23.467994 2.0445880 19.312892 27.623097   FALSE
## 19       Rustic_B  19    19 24.392337 2.0872032 20.150630 28.634045   FALSE
## 20       Rustic_B  20    20 25.290268 2.1269160 20.967855 29.612682    TRUE
## 21       Rustic_B  21    21 26.163366 2.1642087 21.765164 30.561567   FALSE
## 22       Rustic_B  22    22 27.013131 2.1995296 22.543149 31.483112   FALSE
## 23       Rustic_B  23    23 27.840987 2.2332932 23.302389 32.379585   FALSE
## 24       Rustic_B  24    24 28.648284 2.2658823 24.043457 33.253111   FALSE
## 25       Rustic_B  25    25 29.436299 2.2976481 24.766916 34.105681   FALSE
## 26       Rustic_B  26    26 30.206236 2.3289122 25.473317 34.939155   FALSE
## 27       Rustic_B  27    27 30.959233 2.3599672 26.163202 35.755263   FALSE
## 28       Rustic_B  28    28 31.696356 2.3910783 26.837100 36.555612   FALSE
## 29       Rustic_B  29    29 32.418609 2.4224847 27.495528 37.341690   FALSE
## 30       Rustic_B  30    30 33.126929 2.4544010 28.138986 38.114871   FALSE
## 31       Rustic_B  31    31 33.822191 2.4870187 28.767961 38.876421   FALSE
## 32       Rustic_B  32    32 34.505210 2.5205081 29.382921 39.627498   FALSE
## 33       Rustic_B  33    33 35.176741 2.5550195 29.984317 40.369166   FALSE
## 34       Rustic_B  34    34 35.837484 2.5906856 30.572577 41.102390   FALSE
## 35       Rustic_B  35    35 36.488079 2.6276224 31.148108 41.828050   FALSE
## 36       Rustic_B  36    36 37.129117 2.6659316 31.711292 42.546942   FALSE
## 37       Rustic_B  37    37 37.761134 2.7057021 32.262485 43.259782   FALSE
## 38       Rustic_B  38    38 38.384615 2.7470120 32.802015 43.967215   FALSE
## 39       Rustic_B  39    39 39.000000 2.7899297 33.330181 44.669819    TRUE
## 40       Rustic_A   1     1  1.428571 0.2074738  1.006934  1.850209    TRUE
## 41       Rustic_A   2     2  2.806878 0.3950761  2.003987  3.609770   FALSE
## 42       Rustic_A   3     3  4.137668 0.5645831  2.990297  5.285039   FALSE
## 43       Rustic_A   4     4  5.423590 0.7177007  3.965047  6.882133   FALSE
## 44       Rustic_A   5     5  6.667196 0.8560621  4.927468  8.406923   FALSE
## 45       Rustic_A   6     6  7.870940 0.9812259  5.876849  9.865031   FALSE
## 46       Rustic_A   7     7  9.037179 1.0946733  6.812536 11.261823   FALSE
## 47       Rustic_A   8     8 10.168173 1.1978053  7.733939 12.602406   FALSE
## 48       Rustic_A   9     9 11.266081 1.2919404  8.640542 13.891619   FALSE
## 49       Rustic_A  10    10 12.332967 1.3783121  9.531900 15.134034   FALSE
## 50       Rustic_A  11    11 13.370798 1.4580669 10.407649 16.333946   FALSE
## 51       Rustic_A  12    12 14.381441 1.5322632 11.267507 17.495374   FALSE
## 52       Rustic_A  13    13 15.366667 1.6018702 12.111275 18.622059   FALSE
## 53       Rustic_A  14    14 16.328148 1.6677688 12.938834 19.717462   FALSE
## 54       Rustic_A  15    15 17.267460 1.7307522 13.750149 20.784772   FALSE
## 55       Rustic_A  16    16 18.186081 1.7915291 14.545255 21.826906   FALSE
## 56       Rustic_A  17    17 19.085389 1.8507269 15.324259 22.846518   FALSE
## 57       Rustic_A  18    18 19.966667 1.9088963 16.087323 23.846011   FALSE
## 58       Rustic_A  19    19 20.831099 1.9665173 16.834655 24.827543   FALSE
## 59       Rustic_A  20    20 21.679772 2.0240049 17.566499 25.793045    TRUE
## 60       Rustic_A  21    21 22.513675 2.0817170 18.283117 26.744233   FALSE
## 61       Rustic_A  22    22 23.333700 2.1399605 18.984777 27.682623   FALSE
## 62       Rustic_A  23    23 24.140639 2.1989997 19.671734 28.609544   FALSE
## 63       Rustic_A  24    24 24.935189 2.2590626 20.344222 29.526157   FALSE
## 64       Rustic_A  25    25 25.717949 2.3203484 21.002434 30.433464   FALSE
## 65       Rustic_A  26    26 26.489418 2.3830333 21.646512 31.332324   FALSE
## 66       Rustic_A  27    27 27.250000 2.4472769 22.276535 32.223465   FALSE
## 67       Rustic_A  28    28 28.000000 2.5132269 22.892508 33.107492   FALSE
## 68  Polyculture_B   1     1  1.666667 0.3256191  1.004929  2.328404    TRUE
## 69  Polyculture_B   2     2  3.189542 0.5852221  2.000228  4.378857   FALSE
## 70  Polyculture_B   3     3  4.587010 0.7912828  2.978930  6.195090   FALSE
## 71  Polyculture_B   4     4  5.875490 0.9546455  3.935417  7.815563   FALSE
## 72  Polyculture_B   5     5  7.069561 1.0846258  4.865336  9.273786   FALSE
## 73  Polyculture_B   6     6  8.182073 1.1891145  5.765501 10.598644   FALSE
## 74  Polyculture_B   7     7  9.224265 1.2746898  6.633783 11.814746   FALSE
## 75  Polyculture_B   8     8 10.205882 1.3467387  7.468980 12.942785   FALSE
## 76  Polyculture_B   9     9 11.135294 1.4095896  8.270663 13.999925   FALSE
## 77  Polyculture_B  10    10 12.019608 1.4666527  9.039011 15.000205   FALSE
## 78  Polyculture_B  11    11 12.864788 1.5205659  9.774626 15.954949   FALSE
## 79  Polyculture_B  12    12 13.675770 1.5733388 10.478361 16.873179   FALSE
## 80  Polyculture_B  13    13 14.456583 1.6264887 11.151160 17.762005   FALSE
## 81  Polyculture_B  14    14 15.210458 1.6811642 11.793921 18.626994   FALSE
## 82  Polyculture_B  15    15 15.939951 1.7382504 12.407401 19.472501   FALSE
## 83  Polyculture_B  16    16 16.647059 1.7984560 12.992157 20.301961   FALSE
## 84  Polyculture_B  17    17 17.333333 1.8623806 13.548521 21.118146   FALSE
## 85  Polyculture_B  18    18 18.000000 1.9305656 14.076619 21.923381   FALSE
## 86  Polyculture_A   1     1  1.851852 0.2858998  1.270834  2.432870    TRUE
## 87  Polyculture_A   2     2  3.584046 0.5352865  2.496213  4.671879   FALSE
## 88  Polyculture_A   3     3  5.205470 0.7519037  3.677418  6.733522   FALSE
## 89  Polyculture_A   4     4  6.724558 0.9392401  4.815793  8.633324   FALSE
## 90  Polyculture_A   5     5  8.149300 1.1005441  5.912725 10.385875   FALSE
## 91  Polyculture_A   6     6  9.487254 1.2388367  6.969635 12.004873   FALSE
## 92  Polyculture_A   7     7 10.745559 1.3569254  7.987955 13.503164   FALSE
## 93  Polyculture_A   8     8 11.930950 1.4574162  8.969124 14.892776   FALSE
## 94  Polyculture_A   9     9 13.049766 1.5427257  9.914570 16.184962   FALSE
## 95  Polyculture_A  10    10 14.107965 1.6150920 10.825703 17.390227   FALSE
## 96  Polyculture_A  11    11 15.111136 1.6765842 11.703907 18.518365   FALSE
## 97  Polyculture_A  12    12 16.064511 1.7291110 12.550535 19.578488   FALSE
## 98  Polyculture_A  13    13 16.972979 1.7744276 13.366908 20.579050   FALSE
## 99  Polyculture_A  14    14 17.841095 1.8141412 14.154317 21.527873   FALSE
## 100 Polyculture_A  15    15 18.673096 1.8497155 14.914021 22.432170   FALSE
## 101 Polyculture_A  16    16 19.472910 1.8824736 15.647263 23.298556   FALSE
## 102 Polyculture_A  17    17 20.244172 1.9136001 16.355269 24.133075   FALSE
## 103 Polyculture_A  18    18 20.990234 1.9441434 17.039259 24.941209   FALSE
## 104 Polyculture_A  19    19 21.714178 1.9750170 17.700461 25.727896   FALSE
## 105 Polyculture_A  20    20 22.418828 2.0070024 18.340109 26.497548    TRUE
## 106 Polyculture_A  21    21 23.106763 2.0407529 18.959454 27.254072   FALSE
## 107 Polyculture_A  22    22 23.780329 2.0767986 19.559767 28.000892   FALSE
## 108 Polyculture_A  23    23 24.441652 2.1155539 20.142330 28.740975   FALSE
## 109 Polyculture_A  24    24 25.092650 2.1573265 20.708435 29.476864   FALSE
## 110 Polyculture_A  25    25 25.735043 2.2023278 21.259374 30.210711   FALSE
## 111 Polyculture_A  26    26 26.370370 2.2506859 21.796426 30.944314   FALSE
## 112 Polyculture_A  27    27 27.000000 2.3024588 22.320841 31.679159   FALSE
## 113   Intensive_B   1     1  1.846154 0.2724841  1.292400  2.399908    TRUE
## 114   Intensive_B   2     2  3.578462 0.5122828  2.537378  4.619546   FALSE
## 115   Intensive_B   3     3  5.204231 0.7223129  3.736314  6.672147   FALSE
## 116   Intensive_B   4     4  6.730502 0.9053741  4.890560  8.570443   FALSE
## 117   Intensive_B   5     5  8.164047 1.0641489  6.001436 10.326658   FALSE
## 118   Intensive_B   6     6  9.511371 1.2012019  7.070235 11.952507   FALSE
## 119   Intensive_B   7     7 10.778712 1.3189793  8.098224 13.459201   FALSE
## 120   Intensive_B   8     8 11.972040 1.4198070  9.086645 14.857435   FALSE
## 121   Intensive_B   9     9 13.097057 1.5058892 10.036722 16.157392   FALSE
## 122   Intensive_B  10    10 14.159197 1.5793065 10.949660 17.368734   FALSE
## 123   Intensive_B  11    11 15.163629 1.6420129 11.826657 18.500600   FALSE
## 124   Intensive_B  12    12 16.115251 1.6958335 12.668903 19.561599   FALSE
## 125   Intensive_B  13    13 17.018696 1.7424616 13.477588 20.559804   FALSE
## 126   Intensive_B  14    14 17.878328 1.7834557 14.253910 21.502746   FALSE
## 127   Intensive_B  15    15 18.698244 1.8202378 14.999076 22.397412   FALSE
## 128   Intensive_B  16    16 19.482274 1.8540917 15.714307 23.250242   FALSE
## 129   Intensive_B  17    17 20.233980 1.8861632 16.400835 24.067125   FALSE
## 130   Intensive_B  18    18 20.956656 1.9174612 17.059906 24.853405   FALSE
## 131   Intensive_B  19    19 21.653328 1.9488617 17.692764 25.613891   FALSE
## 132   Intensive_B  20    20 22.326756 1.9811128 18.300650 26.352861    TRUE
## 133   Intensive_B  21    21 22.979431 2.0148429 18.884778 27.074085   FALSE
## 134   Intensive_B  22    22 23.613579 2.0505698 19.446319 27.780838   FALSE
## 135   Intensive_B  23    23 24.231154 2.0887126 19.986379 28.475929   FALSE
## 136   Intensive_B  24    24 24.833846 2.1296042 20.505970 29.161723   FALSE
## 137   Intensive_B  25    25 25.423077 2.1735053 21.005983 29.840171   FALSE
## 138   Intensive_B  26    26 26.000000 2.2206187 21.487160 30.512840   FALSE
## 139      Forest_B   1     1  1.652174 0.2776575  1.087906  2.216442    TRUE
## 140      Forest_B   2     2  3.205534 0.5142921  2.160366  4.250701   FALSE
## 141      Forest_B   3     3  4.669113 0.7156377  3.214763  6.123464   FALSE
## 142      Forest_B   4     4  6.051270 0.8868721  4.248930  7.853611   FALSE
## 143      Forest_B   5     5  7.359714 1.0326457  5.261125  9.458302   FALSE
## 144      Forest_B   6     6  8.601533 1.1571128  6.249997 10.953070   FALSE
## 145      Forest_B   7     7  9.783233 1.2639622  7.214553 12.351913   FALSE
## 146      Forest_B   8     8 10.910755 1.3564486  8.154120 13.667390   FALSE
## 147      Forest_B   9     9 11.989515 1.4374256  9.068315 14.910715   FALSE
## 148      Forest_B  10    10 13.024429 1.5093772  9.957005 16.091852   FALSE
## 149      Forest_B  11    11 14.019941 1.5744514 10.820271 17.219611   FALSE
## 150      Forest_B  12    12 14.980059 1.6344916 11.658372 18.301745   FALSE
## 151      Forest_B  13    13 15.908378 1.6910689 12.471712 19.345043   FALSE
## 152      Forest_B  14    14 16.808113 1.7455118 13.260806 20.355420   FALSE
## 153      Forest_B  15    15 17.682130 1.7989356 14.026253 21.338007   FALSE
## 154      Forest_B  16    16 18.532973 1.8522693 14.768709 22.297237   FALSE
## 155      Forest_B  17    17 19.362893 1.9062810 15.488864 23.236922   FALSE
## 156      Forest_B  18    18 20.173883 1.9616007 16.187431 24.160336   FALSE
## 157      Forest_B  19    19 20.967702 2.0187419 16.865125 25.070279   FALSE
## 158      Forest_B  20    20 21.745906 2.0781208 17.522657 25.969156    TRUE
## 159      Forest_B  21    21 22.509881 2.1400736 18.160729 26.859034   FALSE
## 160      Forest_B  22    22 23.260870 2.2048723 18.780030 27.741709   FALSE
## 161      Forest_B  23    23 24.000000 2.2727395 19.381238 28.618762   FALSE
## 162      Forest_A   1     1  1.882353 0.2722319  1.329111  2.435595    TRUE
## 163      Forest_A   2     2  3.659537 0.5146927  2.613555  4.705518   FALSE
## 164      Forest_A   3     3  5.338570 0.7299377  3.855158  6.821981   FALSE
## 165      Forest_A   4     4  6.926147 0.9203862  5.055697  8.796597   FALSE
## 166      Forest_A   5     5  8.428648 1.0883268  6.216902 10.640395   FALSE
## 167      Forest_A   6     6  9.852143 1.2359219  7.340448 12.363839   FALSE
## 168      Forest_A   7     7 11.202400 1.3652126  8.427954 13.976846   FALSE
## 169      Forest_A   8     8 12.484892 1.4781226  9.480985 15.488798   FALSE
## 170      Forest_A   9     9 13.704804 1.5764626 10.501047 16.908562   FALSE
## 171      Forest_A  10    10 14.867043 1.6619338 11.489587 18.244499   FALSE
## 172      Forest_A  11    11 15.976241 1.7361316 12.447997 19.504485   FALSE
## 173      Forest_A  12    12 17.036765 1.8005484 13.377610 20.695919   FALSE
## 174      Forest_A  13    13 18.052721 1.8565761 14.279705 21.825738   FALSE
## 175      Forest_A  14    14 19.027967 1.9055089 15.155507 22.900427   FALSE
## 176      Forest_A  15    15 19.966114 1.9485449 16.006194 23.926034   FALSE
## 177      Forest_A  16    16 20.870536 1.9867879 16.832898 24.908175   FALSE
## 178      Forest_A  17    17 21.744379 2.0212494 17.636706 25.852052   FALSE
## 179      Forest_A  18    18 22.590564 2.0528496 18.418672 26.762456   FALSE
## 180      Forest_A  19    19 23.411797 2.0824196 19.179811 27.643783   FALSE
## 181      Forest_A  20    20 24.210576 2.1107030 19.921111 28.500040    TRUE
## 182      Forest_A  21    21 24.989197 2.1383583 20.643530 29.334864   FALSE
## 183      Forest_A  22    22 25.749763 2.1659618 21.347999 30.151527   FALSE
## 184      Forest_A  23    23 26.494189 2.1940108 22.035422 30.952955   FALSE
## 185      Forest_A  24    24 27.224211 2.2229280 22.706678 31.741744   FALSE
## 186      Forest_A  25    25 27.941392 2.2530656 23.362612 32.520172   FALSE
## 187      Forest_A  26    26 28.647131 2.2847115 24.004038 33.290223   FALSE
## 188      Forest_A  27    27 29.342666 2.3180947 24.631731 34.053602   FALSE
## 189      Forest_A  28    28 30.029088 2.3533916 25.246421 34.811755   FALSE
## 190      Forest_A  29    29 30.707341 2.3907325 25.848788 35.565894   FALSE
## 191      Forest_A  30    30 31.378234 2.4302087 26.439456 36.317013   FALSE
## 192      Forest_A  31    31 32.042447 2.4718786 27.018985 37.065908   FALSE
## 193      Forest_A  32    32 32.700535 2.5157739 27.587867 37.813202   FALSE
## 194      Forest_A  33    33 33.352941 2.5619059 28.146522 38.559360   FALSE
## 195      Forest_A  34    34 34.000000 2.6102711 28.695291 39.304709   FALSE
#----------------------------

ggplot(curva3, aes(x = Sites, y = Richness, ymax =  UPR, ymin= LWR)) +
  scale_x_continuous(expand=c(0, 1), sec.axis = dup_axis(labels=NULL, name=NULL)) +
  scale_y_continuous(sec.axis = dup_axis(labels=NULL, name=NULL)) +
  geom_line(aes(colour=Grouping), size=2) +
  geom_point(data=subset(curva3, labelit==TRUE),
             aes(colour=Grouping, shape=Grouping), size=5) +
  #geom_ribbon(aes(colour=Grouping), alpha=0.2, show.legend=FALSE) +
  theme_classic()
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 7. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 3 rows containing missing values (geom_point).

El sitio rústico B y el bosque A presentan una mayor riqueza. La abundancia de árboles en Rústico B es de 10.5, con 6 especies de árboles y una cobertura del dosel de 54.3. Esto puede explicar la riqueza de especies de este sitio. El bosque A tiene una cobertura de dosel de 100, una abundancia de árboles de 16 y 12 especies de árboles, a pesar de tener valores más altos que rústico B en estas variables, se sugiere que un factor determinante pueda ser la disponibilidad de alimento por el cultivo del café.

Métodos no paramétricos

■■■
specpool(aves) #estimado del número de especies  observadas en la muestra.
##     Species     chao chao.se    jack1 jack1.se    jack2     boot boot.se   n
## All      68 74.01897 4.77657 78.94359 3.299616 79.98435 73.92185 2.25353 195
# Utilizando cantidad de especies observadas, podemos calcular la riqueza para cada sitio de muestreo
estimacion <- poolaccum(aves)
estimacion
##    N     S     Chao Jackknife 1 Jackknife 2 Bootstrap
##    3  4.80 11.94833     7.84000     9.32000  6.160000
##    4  6.53 21.49625    11.15000    14.10667  8.502187
##    5  8.00 31.66200    13.98400    18.24700 10.490131
##    6  9.52 41.37208    16.83667    22.32733 12.521040
##    7 11.21 51.23357    19.95286    26.67905 14.767543
##    8 12.36 59.22573    22.00250    29.48964 16.270540
##    9 13.77 60.18274    24.42778    32.66444 18.094727
##   10 14.82 65.01495    26.22300    35.01500 19.446927
##   11 16.09 69.45500    28.42636    37.95327 21.091860
##   12 17.35 73.27740    30.59583    40.79659 22.722266
##   13 18.62 77.11682    32.73385    43.53077 24.352932
##   14 19.72 77.52414    34.54000    45.76725 25.752824
##   15 20.70 80.95514    36.11867    47.72395 26.987487
##   16 21.86 80.48391    37.93812    49.89821 28.437489
##   17 22.99 79.66148    39.64882    51.82529 29.835910
##   18 23.96 81.64508    41.19611    53.76239 31.050313
##   19 24.93 77.77442    42.57947    55.20918 32.225739
##   20 25.92 80.71137    44.10300    56.95500 33.457251
##   21 26.88 79.06559    45.53714    58.60281 34.634131
##   22 27.94 77.02980    47.10727    60.30554 35.938285
##   23 28.89 78.57183    48.57522    62.05796 37.116429
##   24 29.60 73.83277    49.42792    62.74708 37.928572
##   25 30.47 77.23499    50.70680    64.26377 38.981660
##   26 31.27 73.70255    51.79885    65.38322 39.932679
##   27 32.12 73.04068    52.94889    66.58422 40.935681
##   28 32.69 73.06689    53.61500    67.15701 41.573812
##   29 33.42 72.94895    54.50690    67.93674 42.410386
##   30 34.15 72.97082    55.49400    68.96490 43.270926
##   31 34.87 72.74912    56.43129    69.87669 44.111850
##   32 35.52 72.95774    57.19094    70.47834 44.845783
##   33 36.19 72.14613    57.94030    71.03898 45.592396
##   34 36.85 72.45817    58.69794    71.65167 46.331000
##   35 37.51 72.17046    59.51286    72.33045 47.092328
##   36 38.08 70.05798    60.17861    72.88409 47.733570
##   37 38.68 68.79720    60.78595    73.20989 48.381403
##   38 39.21 68.38198    61.28342    73.43201 48.939527
##   39 39.70 67.91059    61.74974    73.66764 49.458423
##   40 40.25 67.67530    62.30450    74.01873 50.047525
##   41 40.71 68.33416    62.77829    74.39910 50.535981
##   42 41.28 68.32238    63.37119    74.83298 51.149116
##   43 41.67 67.68971    63.65651    74.76919 51.538406
##   44 42.07 66.67521    63.93159    74.62805 51.935253
##   45 42.48 66.12941    64.23556    74.63613 52.342608
##   46 42.92 65.52400    64.50043    74.41553 52.769280
##   47 43.40 65.84520    64.96128    74.67374 53.275098
##   48 43.84 64.72727    65.16625    74.34260 53.678997
##   49 44.28 65.26707    65.64490    74.85286 54.145425
##   50 44.76 65.75592    66.20240    75.47091 54.667665
##   51 45.21 65.89246    66.59235    75.65505 55.126219
##   52 45.57 65.51404    66.78404    75.44034 55.461948
##   53 46.12 66.46966    67.51849    76.34042 56.093815
##   54 46.43 66.25391    67.68889    76.26435 56.376264
##   55 46.75 66.15479    67.82964    76.13850 56.651851
##   56 47.16 66.60750    68.24661    76.53789 57.077314
##   57 47.56 66.56944    68.63368    76.81218 57.490943
##   58 47.88 66.10236    68.73414    76.49249 57.764085
##   59 48.14 65.60115    68.71525    75.96635 57.959069
##   60 48.49 65.63684    68.98267    76.09012 58.293985
##   61 48.87 65.68044    69.27000    76.22394 58.658996
##   62 49.21 65.98187    69.54661    76.50912 58.978836
##   63 49.60 66.20269    69.94190    76.82838 59.387747
##   64 49.94 66.19521    70.07047    76.63906 59.673985
##   65 50.23 66.35837    70.30631    76.81666 59.952148
##   66 50.45 66.32559    70.33409    76.62176 60.115510
##   67 50.74 66.43251    70.50060    76.57594 60.378237
##   68 51.04 66.92016    70.69662    76.76048 60.641471
##   69 51.21 67.05501    70.74275    76.77575 60.762802
##   70 51.54 67.10464    70.95857    76.85557 61.064024
##   71 51.86 67.49276    71.26282    77.17835 61.377662
##   72 52.18 67.39586    71.38944    76.90893 61.655851
##   73 52.48 67.63121    71.65370    77.10500 61.952655
##   74 52.74 67.28723    71.69041    76.77346 62.157197
##   75 53.01 67.39550    71.85533    76.75383 62.404526
##   76 53.36 67.96895    72.29750    77.35975 62.783040
##   77 53.63 68.06959    72.51156    77.52433 63.035642
##   78 53.82 67.90648    72.56654    77.45187 63.176893
##   79 54.09 68.09131    72.76063    77.52883 63.428264
##   80 54.29 68.23825    72.77600    77.34863 63.570565
##   81 54.51 68.43464    72.92975    77.50078 63.762270
##   82 54.80 68.36502    73.08427    77.44091 64.020604
##   83 54.90 68.24261    72.97952    77.17864 64.044028
##   84 55.10 68.10590    72.98452    76.92974 64.184641
##   85 55.38 68.39585    73.24729    77.16248 64.458128
##   86 55.63 68.52165    73.36140    77.11002 64.668112
##   87 55.86 68.41150    73.39609    76.90016 64.838230
##   88 56.03 68.36046    73.40034    76.74699 64.947636
##   89 56.24 68.53235    73.51371    76.84863 65.117391
##   90 56.42 68.60419    73.52778    76.71489 65.236078
##   91 56.64 68.63218    73.67077    76.81739 65.426951
##   92 56.86 68.44418    73.85326    76.94048 65.633275
##   93 57.05 68.52150    73.93645    76.94415 65.784555
##   94 57.20 68.35534    73.90043    76.74062 65.869311
##   95 57.30 68.42650    73.84400    76.63317 65.904135
##   96 57.57 68.62740    74.05646    76.82472 66.151892
##   97 57.83 68.92715    74.38753    77.32037 66.432359
##   98 57.97 68.83799    74.34122    77.10650 66.504578
##   99 58.15 68.90151    74.41404    77.10948 66.645491
##  100 58.30 68.96756    74.40730    76.93540 66.741457
##  101 58.52 68.94236    74.47050    76.80209 66.911442
##  102 58.73 69.38435    74.71176    77.21749 67.113814
##  103 58.89 69.56819    74.82379    77.39618 67.242654
##  104 59.15 69.72265    75.01596    77.58691 67.471521
##  105 59.31 70.20727    75.15762    77.97050 67.597752
##  106 59.46 70.15680    75.22981    77.95381 67.718198
##  107 59.61 70.30150    75.34159    78.07425 67.847579
##  108 59.69 70.29438    75.35361    78.14331 67.886960
##  109 59.82 70.54725    75.46514    78.36101 67.992995
##  110 60.01 70.65491    75.57718    78.35501 68.158127
##  111 60.10 70.47299    75.50000    78.14921 68.180382
##  112 60.26 70.76559    75.60179    78.24986 68.313289
##  113 60.34 70.89040    75.57398    78.23023 68.344284
##  114 60.54 71.15234    75.70579    78.23427 68.527292
##  115 60.61 71.29216    75.70757    78.27381 68.557429
##  116 60.79 71.46457    75.88871    78.41542 68.736993
##  117 60.94 71.60476    75.94068    78.41727 68.849013
##  118 61.00 71.39028    75.86297    78.26959 68.850429
##  119 61.18 71.51430    75.99445    78.41961 69.004552
##  120 61.29 71.64462    76.05592    78.50937 69.085230
##  121 61.40 71.89487    76.13719    78.66791 69.170540
##  122 61.55 72.21699    76.25844    78.85671 69.299684
##  123 61.66 72.03920    76.21073    78.58283 69.352583
##  124 61.76 72.27766    76.32161    78.77137 69.444465
##  125 61.94 72.29192    76.47280    78.91209 69.608380
##  126 62.03 72.07063    76.42484    78.75518 69.642508
##  127 62.16 72.19739    76.52598    78.88491 69.750790
##  128 62.30 72.41322    76.69664    79.21160 69.884957
##  129 62.46 72.46356    76.81783    79.41021 70.017811
##  130 62.59 72.42818    76.85938    79.44091 70.108028
##  131 62.66 72.25732    76.80122    79.27389 70.125924
##  132 62.80 72.49136    76.93212    79.47273 70.250157
##  133 62.95 72.64872    77.06308    79.65204 70.386031
##  134 63.07 72.65401    77.12433    79.66360 70.481838
##  135 63.23 72.70438    77.22556    79.73469 70.617954
##  136 63.37 72.83040    77.32662    79.85466 70.734585
##  137 63.47 72.80587    77.33803    79.73792 70.798891
##  138 63.56 72.70228    77.27986    79.47286 70.839032
##  139 63.66 72.79061    77.31108    79.48364 70.905862
##  140 63.77 72.89718    77.39200    79.59333 70.994141
##  141 63.82 72.64385    77.27390    79.25835 70.986064
##  142 63.90 72.68895    77.25528    79.17991 71.025431
##  143 64.06 72.94093    77.42587    79.48727 71.170263
##  144 64.24 73.29081    77.64625    79.74674 71.360328
##  145 64.35 73.26513    77.66752    79.71807 71.434067
##  146 64.40 73.07419    77.61884    79.59980 71.443923
##  147 64.52 73.18465    77.73946    79.74947 71.556304
##  148 64.66 73.39837    77.87014    79.95813 71.678800
##  149 64.75 73.47127    77.90114    79.95902 71.740169
##  150 64.83 73.48638    77.90227    79.94950 71.779286
##  151 64.92 73.67345    78.01272    80.18719 71.861010
##  152 64.96 73.37430    77.92414    79.89162 71.858819
##  153 65.06 73.34543    77.97503    79.89285 71.938981
##  154 65.16 73.34255    78.00604    79.90349 72.008286
##  155 65.28 73.60234    78.14645    80.17122 72.122504
##  156 65.41 73.73020    78.22731    80.19262 72.230947
##  157 65.50 73.84467    78.30790    80.24344 72.312424
##  158 65.55 73.72535    78.26899    80.09576 72.328415
##  159 65.64 73.69433    78.29987    80.10636 72.388902
##  160 65.73 73.70762    78.34069    80.09751 72.456704
##  161 65.80 73.74731    78.37143    80.13753 72.504755
##  162 65.88 73.91250    78.46185    80.36514 72.572372
##  163 65.95 73.94591    78.48264    80.37554 72.617069
##  164 66.05 73.84052    78.52348    80.36667 72.690466
##  165 66.13 73.93215    78.59400    80.47615 72.757420
##  166 66.18 73.95175    78.59476    80.47636 72.779341
##  167 66.22 73.92924    78.56563    80.42692 72.786040
##  168 66.32 74.04961    78.63625    80.60516 72.858216
##  169 66.40 74.03322    78.66698    80.62555 72.913714
##  170 66.47 74.07345    78.67776    80.59646 72.958412
##  171 66.55 74.22012    78.73830    80.67631 73.023505
##  172 66.65 74.18615    78.76913    80.58860 73.101772
##  173 66.69 74.01276    78.69023    80.32208 73.102230
##  174 66.73 74.02724    78.67098    80.27276 73.115282
##  175 66.85 74.19194    78.81126    80.48172 73.237292
##  176 66.92 74.24866    78.86176    80.54171 73.295106
##  177 66.98 74.14793    78.83266    80.42340 73.319336
##  178 67.02 74.04284    78.76365    80.25523 73.320091
##  179 67.09 73.94817    78.71469    80.07755 73.345974
##  180 67.15 73.97981    78.70544    80.05785 73.372824
##  181 67.25 74.15170    78.79586    80.22665 73.460123
##  182 67.36 74.28414    78.89626    80.37596 73.560418
##  183 67.40 74.21275    78.85705    80.31642 73.563966
##  184 67.44 74.16179    78.79793    80.16802 73.563806
##  185 67.52 74.19241    78.85838    80.20846 73.634085
##  186 67.54 74.08799    78.80909    80.07987 73.625359
##  187 67.59 74.04692    78.81963    80.02110 73.660407
##  188 67.63 74.01535    78.83011    79.98200 73.687750
##  189 67.67 74.01864    78.83063    79.94273 73.708231
##  190 67.74 74.06172    78.88105    80.04204 73.761208
##  191 67.78 74.14692    78.91141    80.17056 73.782695
##  192 67.83 74.10943    78.93187    80.12176 73.820582
##  193 67.87 74.14689    78.96223    80.17154 73.848215
##  194 67.93 74.08554    78.95289    80.08288 73.881273
##  195 68.00 74.01897    78.94359    79.98435 73.921846
plot(estimacion)

estimacion2 <- with (sitios, specpool(aves,Zona))
estimacion2
##               Species      chao  chao.se    jack1 jack1.se    jack2     boot
## Forest_A           34 112.29412 56.88723 55.35294 8.776049 73.32086 42.52113
## Forest_B           24  70.07246 35.39890 40.26087 5.724619 53.16798 30.58192
## Intensive_B        26  53.04327 20.12216 40.42308 5.040516 50.72462 32.08528
## Polyculture_A      27  96.57407 60.23955 43.37037 6.387574 57.33048 33.59651
## Polyculture_B      18  40.66667 19.10982 29.33333 4.488669 37.49020 22.70034
## Rustic_A           28  81.15625 36.02444 48.25000 7.494641 64.17328 36.15621
## Rustic_B           39  85.76923 27.85479 62.38462 8.222258 79.61134 48.72456
##                boot.se  n
## Forest_A      4.424519 34
## Forest_B      2.670009 23
## Intensive_B   2.560986 26
## Polyculture_A 3.022041 27
## Polyculture_B 2.122509 18
## Rustic_A      3.513429 28
## Rustic_B      4.199400 39