Entering Data

type <-  c("Type1", "Type1", "Type1", "Type1", "Type1", "Type1", "Type1", "Type1", "Type1", "Type1", "Type2", "Type2", "Type2", "Type2", "Type2", "Type2", "Type2", "Type2", "Type2", "Type2")
data <-  c(65, 81, 57, 66, 82, 82, 67, 59, 75, 70, 64, 71, 83, 59, 65, 56, 69, 74, 82, 79)

A <-  cbind(type,data)

BT <- as.data.frame(A)
BT$type <- as.factor(BT$type)
BT$data <- as.numeric(BT$data)

Ans (a) Using Levene’s test to prove equality of the two variances:

library (lawstat)
levene.test(BT$data, BT$type, location="mean")
## 
##  Classical Levene's test based on the absolute deviations from the mean
##  ( none not applied because the location is not set to median )
## 
## data:  BT$data
## Test Statistic = 0.0014598, p-value = 0.9699

We can see that the P-Value is 0.99699 which is very large when compared to the alpha value 0.05. This shows a weak evidence against the null hypothesis, so we fail to reject the null hypothesis.

Ans (b) Using the Two sample t-Test to test the hypothesis that the mean burning times are equal:

dat1 <- BT %>% filter (type=="Type1") %>% select (data)
dat2 <- BT %>% filter (type=="Type2") %>% select (data)
t.test(dat1, dat2, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  dat1 and dat2
## t = 0.048008, df = 18, p-value = 0.9622
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -8.552441  8.952441
## sample estimates:
## mean of x mean of y 
##      70.4      70.2

Null hypothesis: Ho : u1=u2 : u1-u2=0

Alternative hypothesis: Ha : u1/=u2 : u1-u2 /= 0

The P-Value is 0.9622 which is greater than 0.05. Hence, we do not reject the null hypothesis Ho and the mean burning times are equal.

Source Code

# All R code used in document

type <-  c("Type1", "Type1", "Type1", "Type1", "Type1", "Type1", "Type1", "Type1", "Type1", "Type1", "Type2", "Type2", "Type2", "Type2", "Type2", "Type2", "Type2", "Type2", "Type2", "Type2")
data <-  c(65, 81, 57, 66, 82, 82, 67, 59, 75, 70, 64, 71, 83, 59, 65, 56, 69, 74, 82, 79)

A <-  cbind(type,data)

BT <- as.data.frame(A)
BT$type <- as.factor(BT$type)
BT$data <- as.numeric(BT$data)

library (lawstat)
levene.test(BT$data, BT$type, location="mean")

library(dplyr)
dat1 <- BT %>% filter (type=="Type1") %>% select (data)
dat2 <- BT %>% filter (type=="Type2") %>% select (data)
t.test(dat1, dat2, var.equal=TRUE)