Given Data on Machine 1 & 2
Machine1 <- c(16.03,16.04,16.05,16.05,16.02,16.01,15.96,15.98,16.02,15.99)
Machine2 <- c(16.02,15.97,15.96,16.01,15.99,16.03,16.04,16.02,16.01,16.00)
M <- cbind(Machine1,Machine2)
print(M)
## Machine1 Machine2
## [1,] 16.03 16.02
## [2,] 16.04 15.97
## [3,] 16.05 15.96
## [4,] 16.05 16.01
## [5,] 16.02 15.99
## [6,] 16.01 16.03
## [7,] 15.96 16.04
## [8,] 15.98 16.02
## [9,] 16.02 16.01
## [10,] 15.99 16.00
Descriptive Statistics for Machine 1
summary(Machine1)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 15.96 15.99 16.02 16.02 16.04 16.05
Descriptive Statistics for Machine 2
summary(Machine2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 15.96 15.99 16.01 16.00 16.02 16.04
Two sample t-Test
t.test(Machine1, Machine2, alternative = "two.sided", var.equal = TRUE, conf.level = .95)
##
## Two Sample t-test
##
## data: Machine1 and Machine2
## t = 0.79894, df = 18, p-value = 0.4347
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.01629652 0.03629652
## sample estimates:
## mean of x mean of y
## 16.015 16.005
Answers:-
(a) Stating Hypothesis:
Null hypothesis: Ho : u1=u2 : u1-u2=0
There is no significant difference in the net volume of filling bottle in both Machines.
Alternative hypothesis: Ha : u1/=u2 : u1-u2 /= 0
There is significant difference in net volume of filling bottle in the Machines.
(b) Here, we use the two sample t-test because we know the population standard deviation. Comparing the p value with the significance level alpha=0.05 we see that P value > alpha, so we can conclude that we have enough evidence to fail to reject the null hypothesis, and the difference between the two groups is not significantly different.
(c) The P-value for the test for [t = 0.79894] is 0.4347
(d) The 95 percent confidence interval on the difference in the mean fill volume for the two machines is -0.01629652 <= u1-u2 <= 0.03629652
Source Code
# All R code used in document
library(dplyr)
Machine1 <- c(16.03,16.04,16.05,16.05,16.02,16.01,15.96,15.98,16.02,15.99)
Machine2 <- c(16.02,15.97,15.96,16.01,15.99,16.03,16.04,16.02,16.01,16.00)
M <- cbind(Machine1,Machine2)
print(M)
summary(Machine1)
summary(Machine2)
t.test(Machine1, Machine2, alternative = "two.sided", var.equal = TRUE, conf.level = .95)