DATA608 Principles of Data Visualization and Introduction to ggplot2

Github Link Web Link

Note: The dataset used for this homework is about the 5,000 fastest growing companies in the US (as compiled by Inc. magazine). Provided by: Charley Ferrari

1. Data Structure

Rank Name Growth_Rate Revenue Industry Employees City State
1 Fuhu 421.48 1.179e+08 Consumer Products & Services 104 El Segundo CA
2 FederalConference.com 248.31 4.960e+07 Government Services 51 Dumfries VA
3 The HCI Group 245.45 2.550e+07 Health 132 Jacksonville FL
4 Bridger 233.08 1.900e+09 Energy 50 Addison TX
5 DataXu 213.37 8.700e+07 Advertising & Marketing 220 Boston MA
6 MileStone Community Builders 179.38 4.570e+07 Real Estate 63 Austin TX
7 Value Payment Systems 174.04 2.550e+07 Financial Services 27 Nashville TN
8 Emerge Digital Group 170.64 2.390e+07 Advertising & Marketing 75 San Francisco CA

2. Data Preparation

2.1 Checking for Missing Values

And lets preview this data:

Think a bit on what these summaries mean. Use the space below to add some more relevant non-visual exploratory information you think helps you understand this data:

misValues <- sum(is.na(inc))# Returning the column names with missing values
#column_na1 <- colnames(insuranceT_df1)[ apply(insuranceT_df1, 2, anyNA) ] # 2 is dimension(dim())

#misValues1 <- sum(is.na(prof.salary$yrs.since.phd))
#misValues1

cat("From Professor Salary dataset, the total of missing values is : ", misValues)
## From Professor Salary dataset, the total of missing values is :  12

Let’s visualize the missing values per variable.

x
Rank 0
Name 0
Growth_Rate 0
Revenue 0
Industry 0
Employees 12
City 0
State 0
##        Rank        Name Growth_Rate     Revenue    Industry   Employees 
##           0           0           0           0           0          12 
##        City       State 
##           0           0

Variable, Employees has 12 missing values which represents 0.24% of the total record. We can delete this missing values as it has no significant impact on the entire data.

##        Rank        Name Growth_Rate     Revenue    Industry   Employees 
##           0           0           0           0           0           0 
##        City       State 
##           0           0

Let’s see stats

##       Rank          Name            Growth_Rate         Revenue         
##  Min.   :   1   Length:4989        Min.   :  0.340   Min.   :2.000e+06  
##  1st Qu.:1252   Class :character   1st Qu.:  0.770   1st Qu.:5.100e+06  
##  Median :2502   Mode  :character   Median :  1.420   Median :1.090e+07  
##  Mean   :2501                      Mean   :  4.615   Mean   :4.825e+07  
##  3rd Qu.:3750                      3rd Qu.:  3.290   3rd Qu.:2.860e+07  
##  Max.   :5000                      Max.   :421.480   Max.   :1.010e+10  
##    Industry           Employees           City              State          
##  Length:4989        Min.   :    1.0   Length:4989        Length:4989       
##  Class :character   1st Qu.:   25.0   Class :character   Class :character  
##  Mode  :character   Median :   53.0   Mode  :character   Mode  :character  
##                     Mean   :  232.7                                        
##                     3rd Qu.:  132.0                                        
##                     Max.   :66803.0

Question 1

Create a graph that shows the distribution of companies in the dataset by State (ie how many are in each state). There are a lot of States, so consider which axis you should use. This visualization is ultimately going to be consumed on a ‘portrait’ oriented screen (ie taller than wide), which should further guide your layout choices.

Companies distribution by state

#my-chunk1, R.options = list(width = 10)} or fig.dim = c(8,6)
library(ggplot2)

#checking variable distribution
#library(ggthemes)
#plot1 <-inc1$State %>%
#   gather() %>%                             
#   ggplot(aes(value)) +                     
#     facet_wrap(~ key, scales = "free") +  
#     geom_bar() +
#   theme_wsj()+ scale_colour_wsj("colors6")
# plot1



# Something wrong with the code below...i have used it in the pass with no issue
 #  ggplot(inc1, aes(x= (State))) + 
 #    geom_bar(aes(y = ..prop.., fill = factor(..x..)), stat="count") +
 #    geom_text(aes( label = scales::percent(..prop..),
 #                   y= ..prop.. ), stat= "count", vjust = -.5) +
 #    labs(y = "Percent") +
 #    scale_y_continuous(labels=percent)
 #    
 # ggplot(inc1, aes(x=State)) +   geom_bar(stat='identity', position='dodge')

#ggplot(inc1) + geom_bar(aes(x = State))    
#     
# ggplot(inc1) + geom_bar(aes(y = State))    
# 
# 
# 
# ggplot(data=inc1, aes(y=State)) +
# geom_bar(fill= rainbow(52)) +
# geom_text(stat='count', aes(label=..count..), vjust=-1)

 #     geom_bar(aes(x=variables, y=number.missing), stat = 'identity', col='blue') +
 #     labs(x='variables', y="number of missing values", title='Number of missing values') +
 #   theme(axis.text.x = element_text(angle = 100, hjust = 0.2))

ggplot(data=inc1, aes(x=State)) +
geom_bar(fill= rainbow(52)) +
geom_text(stat='count', size= 4, aes(label=..count..), vjust=-0.1)+
 #     geom_bar(aes(x=variables, y=number.missing), stat = 'identity', col='blue') +
 labs(x='Number of Companies', y="States", title='Number of Companies by State') +
 theme(axis.text.x = element_text(angle = 100, hjust = 0.1))

print("Display plot in verticale, We could add the industry with fill = ? , but something goes wrong when adding reorder() aes(x = reorder(?), ...")
## [1] "Display plot in verticale, We could add the industry with fill = ? , but something goes wrong when adding reorder() aes(x = reorder(?), ..."
ggplot(data=inc1, aes(y=State)) +
geom_bar(fill= rainbow(52)) +
geom_text(stat='count', size= 4, aes(label=..count..), vjust=-0)+
 #     geom_bar(aes(x=variables, y=number.missing), stat = 'identity', col='blue') +
 labs(x='Number of Companies', y="States", title='Number of Companies by State') +
 theme(axis.text.x = element_text(angle = 180, hjust = 0.2))

# library(scales)
# plot1b <- ggplot(data=inc1, aes(x=States)) + 
#       geom_bar(aes(y = (..count..)/sum(..count..)))
# plot1b + scale_y_continuous(labels = percent)

print("Another way of presenting the result and fixing the error with reorder()")
## [1] "Another way of presenting the result and fixing the error with reorder()"
count_companyState <- inc1 %>%
  group_by(State) %>%
  summarise(Number_of_Companies = n())
  
#count_companyState



ggplot(count_companyState, aes(x = Number_of_Companies, y = reorder(State, -Number_of_Companies))) + geom_bar(stat = "identity", col= "blue")

Quesiton 2

Lets dig in on the state with the 3rd most companies in the data set. Imagine you work for the state and are interested in how many people are employed by companies in different industries. Create a plot that shows the average and/or median employment by industry for companies in this state (only use cases with full data, use R’s complete.cases() function.) In addition to this, your graph should show how variable the ranges are, and you should deal with outliers.

# We need to filter the dataframe by third-state 
count_companyState[
  with(count_companyState, order(Number_of_Companies)),
]
## # A tibble: 52 x 2
##    State Number_of_Companies
##    <chr>               <int>
##  1 PR                      1
##  2 AK                      2
##  3 WV                      2
##  4 WY                      2
##  5 SD                      3
##  6 MT                      4
##  7 NM                      5
##  8 VT                      6
##  9 HI                      7
## 10 AR                      9
## # ... with 42 more rows
inc2 <- inc1 %>%
  filter(State == 'NY')%>%
  filter(complete.cases(.))
#View(inc2)

inc2 <- inc2 %>%
  group_by(Industry)%>%
  summarise(mean_Employees = mean(Employees), median_Employees = median(Employees), Number_of_Companies = n())

# something wrong when adding arrange()
#%>%
  #arrange(-mean_Employees)
  #arrange(Industry, -mean_Employees, median_Employees, Number_of_Companies)

ggplot(inc2, aes(x = median_Employees, y = reorder(Industry, -median_Employees))) + geom_bar(stat = "identity", col = "green")

ggplot(data=inc2, aes(x= Number_of_Companies, Industry), y= reorder(Industry )) +
geom_bar(stat= 'identity', fill = 'orange') +
geom_text(size= 4, aes(label=round(mean_Employees, 0)), vjust=-1)+
 #     geom_bar(aes(x=variables, y=number.missing), stat = 'identity', col='blue') +
 labs(x='Number of Companies', y="States", title='Average Employees per Industry in new York State') +
 theme(axis.text.x = element_text(angle = 180, hjust = 0.2))

ggplot(inc2, aes(x=Number_of_Companies, y=Industry, fill=median_Employees)) + 
  geom_bar(stat="identity", position="stack") +
  geom_text(aes(y=Industry, x=5, label=round(mean_Employees,0)), 
            size=4, inherit.aes=FALSE)

Question 3

Now imagine you work for an investor and want to see which industries generate the most revenue per employee. Create a chart that makes this information clear. Once again, the distribution per industry should be shown.

inc3 <- inc1 %>%
  filter(State == 'NY')%>%
  filter(complete.cases(.))

# Creating new dataframe with total revenue by industry, total revenue by employee per New York State
inc3 <- inc3 %>%
  group_by(Industry)%>%
  summarise(revenueTotal = sum(Revenue), EmployeesTotal = sum(Employees)) %>%
  mutate(Revenue_per_Employees = revenueTotal/ EmployeesTotal)

ggplot(inc3, aes(x = Revenue_per_Employees, y = reorder(Industry, -Revenue_per_Employees))) + geom_bar(stat = "identity", fill = "coral")+geom_text(size= 4, aes(label=round(Revenue_per_Employees, 0)), vjust=-0)+
 #     geom_bar(aes(x=variables, y=number.missing), stat = 'identity', col='blue') +
 labs(x='Revenue_per_Employees', y="States", title='Industry Revenue per Employee in new York State') +
 theme(axis.text.x = element_text(angle = 180, hjust = 0.2))