For matrix \(A = \left[\begin{array}{cc} 0 & 4 & -1 & 1\\-2 & 6 & -1 & 1\\ -2 & 8 & -1 & -1\\-2 & 8 & -3 & 1\end{array}\right]\)
the characteristic polynomial of \(A\) is \(p^{A}(x) = (x + 2)(x − 2)^{2}(x − 4)\)
Find the eigenvalues and corresponding eigenspaces of A.
Following the steps shown in this week’s Khan Acad. tutorials:
To find the eigenvalues, we solve for any root \(x\) that makes the polynomial equal 0.
Then to find the eigenspaces corresponding to each eigenvalue,
we calculate the associated eigenvectors for each eigenvalue.
First set of eigenvectors, a.k.a. “first eigenspace”…
\((x_{1}\cdot I_{4} - A)\cdot\overrightarrow{v} = \overrightarrow{0}\), meaning \(\left(\left[\begin{array}{cc} -2 & 0 & 0 & 0\\0 & -2 & 0 & 0\\ 0 & 0 & -2 & 0\\0 & 0 & 0 & -2\end{array}\right] - \left[\begin{array}{cc} 0 & 4 & -1 & 1\\-2 & 6 & -1 & 1\\ -2 & 8 & -1 & -1\\-2 & 8 & -3 & 1\end{array}\right]\right)\cdot\left[\begin{array}{cc} v_{1}\\v_{2}\\v_{3}\\v_{4}\end{array}\right] = \left[\begin{array}{cc} 0\\0\\0\\0\end{array}\right]\)
which is \(\left[\begin{array}{cc} -2 & -4 & 1 & -1\\2 & -8 & 1 & -1\\ 2 & -8 & -1 & 1\\2 & -8 & 3 & -3\end{array}\right]\cdot\left[\begin{array}{cc} v_{1}\\v_{2}\\v_{3}\\v_{4}\end{array}\right] = \left[\begin{array}{cc} 0\\0\\0\\0\end{array}\right]\)
row-reducing to \(\left[\begin{array}{cc} -6 & 0 & 0 & 0\\0 & -6 & 0 & 0\\ 0 & 0 & 1 & -1\\0 & 0 & 0 & 0\end{array}\right]\cdot\left[\begin{array}{cc} v_{1}\\v_{2}\\v_{3}\\v_{4}\end{array}\right] = \left[\begin{array}{cc} 0\\0\\0\\0\end{array}\right]\)
making \(v_{1} = v_{2} = 0\) and \(v_{3} = v_{4}\) so that the eigenspace for \(x=-2\) is
the set of all vectors that are a scalar multiple of \(\overrightarrow{v}=\left[\begin{array}{cc} 0\\0\\1\\1\end{array}\right]\)
Now for the second eigenspace/set of eigenvectors…
\((x_{2}\cdot I_{4} - A)\cdot\overrightarrow{v} = \overrightarrow{0}\), meaning \(\left(\left[\begin{array}{cc} 2 & 0 & 0 & 0\\0 & 2 & 0 & 0\\ 0 & 0 & 2 & 0\\0 & 0 & 0 & 2\end{array}\right] - \left[\begin{array}{cc} 0 & 4 & -1 & 1\\-2 & 6 & -1 & 1\\ -2 & 8 & -1 & -1\\-2 & 8 & -3 & 1\end{array}\right]\right)\cdot\left[\begin{array}{cc} v_{1}\\v_{2}\\v_{3}\\v_{4}\end{array}\right] = \left[\begin{array}{cc} 0\\0\\0\\0\end{array}\right]\)
which is \(\left[\begin{array}{cc} 2 & -4 & 1 & -1\\2 & -4 & 1 & -1\\ 2 & -8 & 3 & 1\\2 & -8 & 3 & 1\end{array}\right]\cdot\left[\begin{array}{cc} v_{1}\\v_{2}\\v_{3}\\v_{4}\end{array}\right] = \left[\begin{array}{cc} 0\\0\\0\\0\end{array}\right]\)
row-reducing to \(\left[\begin{array}{cc} 2 & 0 & -1 & -3\\0 & 0 & 0 & 0\\ 0 & 2 & -1 & -1\\0 & 0 & 0 & 0\end{array}\right]\cdot\left[\begin{array}{cc} v_{1}\\v_{2}\\v_{3}\\v_{4}\end{array}\right] = \left[\begin{array}{cc} 0\\0\\0\\0\end{array}\right]\)
The top row tells us that \(v_{1} = \frac{1}{2}v_{3} + \frac{3}{2}v_{4}\)
and the third row gives us \(v_{2} = \frac{1}{2}v_{3} + \frac{1}{2}v_{4}\)
If we set \(v_{3} =\) any scalar \(\alpha\) and \(v_{4}\) = any scalar \(\beta\) then we get
the eigenspace for \(x=2\), the set of all vectors that are the sum of:
\(\alpha \cdot\left[\begin{array}{cc} \frac{1}{2}\\\frac{1}{2}\\1\\0\end{array}\right] + \beta \cdot \left[\begin{array}{cc} \frac{3}{2}\\\frac{1}{2}\\0\\1\end{array}\right]\)
and third and final eigenspace…
\((x_{3}\cdot I_{4} - A)\cdot\overrightarrow{v} = \overrightarrow{0}\), meaning \(\left(\left[\begin{array}{cc} 4 & 0 & 0 & 0\\0 & 4 & 0 & 0\\ 0 & 0 & 4 & 0\\0 & 0 & 0 & 4\end{array}\right] - \left[\begin{array}{cc} 0 & 4 & -1 & 1\\-2 & 6 & -1 & 1\\ -2 & 8 & -1 & -1\\-2 & 8 & -3 & 1\end{array}\right]\right)\cdot\left[\begin{array}{cc} v_{1}\\v_{2}\\v_{3}\\v_{4}\end{array}\right] = \left[\begin{array}{cc} 0\\0\\0\\0\end{array}\right]\)
which is \(\left[\begin{array}{cc} 4 & -4 & 1 & -1\\2 & -2 & 1 & -1\\ 2 & -8 & 5 & 1\\2 & -8 & 3 & 3\end{array}\right]\cdot\left[\begin{array}{cc} v_{1}\\v_{2}\\v_{3}\\v_{4}\end{array}\right] = \left[\begin{array}{cc} 0\\0\\0\\0\end{array}\right]\)
row-reducing to \(\left[\begin{array}{cc} 1 & 0 & 0 & -1\\0 & 1 & 0 & -1\\ 0 & 0 & -1 & 1\\0 & 0 & 0 & 0\end{array}\right]\cdot\left[\begin{array}{cc} v_{1}\\v_{2}\\v_{3}\\v_{4}\end{array}\right] = \left[\begin{array}{cc} 0\\0\\0\\0\end{array}\right]\)
No matter what you set \(v_{4}\) to be, you can see that all the others have to equal \(v_{4}\)
which means that the eigenspace for the eigenvalue \(x = 4\) is any scalar multiple of \(\left[\begin{array}{cc} 1\\1\\1\\1\end{array}\right]\)