Collected data

We have collected 36 answers.

Collected data shows that most people do not think that they should pay for testing (the fair price for most people is below 50 CHF) . But when asked what is the maximum amount they are willing to pay, a new cluster emerges (Graph 02).
Indeed, some people are willing to pay 100 CHF for the new test, and they are going to recommend it to other users (NPS).

Looking for Champions

So how can we predict if a customer is a good customer ?

We are currently looking for customers

After 2 rounds of interviews, we had 11 champions over a total of 36 respondents (=0.3%).

Exploratory Data Analysis with Random Forest

In this section, the systems analyzes 70% of the collected data (=0.7 * 36) and test its model to predict 10 answers.
The results are shown below.

.pred_class .pred_Detractor .pred_Neutral .pred_Supporter NPS_Fact
Detractor 0.742 0.084 0.174 Detractor
Neutral 0.382 0.614 0.004 Neutral
Detractor 0.802 0.078 0.120 Detractor
Neutral 0.230 0.768 0.002 Neutral
Detractor 0.602 0.398 0.000 Detractor
Detractor 0.722 0.170 0.108 Detractor
Supporter 0.378 0.058 0.564 Supporter
Detractor 0.904 0.016 0.080 Detractor
Detractor 0.654 0.184 0.162 Detractor
Supporter 0.252 0.154 0.594 Supporter

The accuracy of the Random forest model is 1 (1.0 = 100% being the maximum).

The classification rules extracted by the system are …

len freq err condition pred
3 0.04 0 Before %in% c(‘Same’,‘Worse’) & During %in% c(‘Worse’) & After %in% c(‘Better’,‘Same’) Supporter
3 0.08 0 Before %in% c(‘Same’,‘Worse’) & During %in% c(‘Better’) & After %in% c(‘Better’) Neutral
1 0.08 0 Before %in% c(‘Worse’) Neutral
2 0.16 0.25 Before %in% c(‘Same’,‘Worse’) & During %in% c(‘Better’) Neutral
1 0.2 0.4 During %in% c(‘Better’) Neutral
2 0.08 0.5 During %in% c(‘Worse’) & After %in% c(‘Better’) Neutral
2 0.08 0 During %in% c(‘Same’) & After %in% c(‘Better’) Detractor
3 0.04 0 Before %in% c(‘Better’) & During %in% c(‘Better’) & After %in% c(‘Better’) Detractor
2 0.16 0.25 During %in% c(‘Better’,‘Worse’) & After %in% c(‘Same’,‘Worse’) Detractor
1 0.16 0.25 Before %in% c(‘Better’) Detractor
3 0.32 0.375 Before %in% c(‘Same’) & During %in% c(‘Same’) & After %in% c(‘Better’,‘Worse’) Detractor
2 0.32 0.375 Before %in% c(‘Better’,‘Same’) & After %in% c(‘Worse’) Detractor
1 0.16 0.5 During %in% c(‘Worse’) Detractor
3 0.44 0.545 Before %in% c(‘Same’,‘Worse’) & During %in% c(‘Better’,‘Same’) & After %in% c(‘Better’,‘Worse’) Detractor
3 0.2 0.6 Before %in% c(‘Same’) & During %in% c(‘Same’,‘Worse’) & After %in% c(‘Same’) Detractor
3 0.32 0.625 Before %in% c(‘Same’,‘Worse’) & During %in% c(‘Better’,‘Same’) & After %in% c(‘Same’) Detractor

Effect of the customer journey on promoter score

The steps in the customer journey seems to have an effect on the willingness to pay of the customers.
Nonetheless, the collected sample was fairly small and we predict what is the probability that the results could change, if new data is collected.

The probability that the difference between the NPS scores of those who liked the new “Before” stage (wrt those who did not like it) will change, if new data is collected, is: 0.29 (p-value).

The probability that the difference between the NPS scores of those who liked the new “DUring” stage or thought it was the same (wrt those who did not like it) will change, if new data is collected, is: 0.63 (p-value)

The probability that the difference between the NPS scores of those who liked the new “After” stage (wrt those who did not like it) will change, if new data is collected, is: 0.47 (p-value)

Effect of the customer journey on the NPS associated with 100 CHF

term estimate std.error statistic p.value
Age<20 ans -1.0714286 2.751585 -0.3893859 0.7007344
Age21-30 ans 2.9075988 1.093686 2.6585320 0.0143506
Age31-40 ans 2.4748734 1.743772 1.4192643 0.1698361
Age41-50 ans 8.4986829 1.605817 5.2924364 0.0000260
Age51-60 ans 7.4360182 1.495734 4.9714845 0.0000565
Age61 ans et plus 7.4360182 1.495734 4.9714845 0.0000565
TestExperienceBetter -9.5074468 2.974678 -3.1961263 0.0041700
TestExperienceWorse -1.5074468 2.974678 -0.5067596 0.6173651
TestResultsBetter 3.0714286 1.264735 2.4285160 0.0237882
TestResultsWorse -1.2480243 1.150307 -1.0849492 0.2896907
Age21-30 ans:TestExperienceBetter 9.3569909 3.184645 2.9381579 0.0076077
Age31-40 ans:TestExperienceBetter
Age41-50 ans:TestExperienceBetter 2.7104863 3.416931 0.7932516 0.4361035
Age51-60 ans:TestExperienceBetter
Age61 ans et plus:TestExperienceBetter
Age21-30 ans:TestExperienceWorse -0.0079534 3.410107 -0.0023323 0.9981601
Age31-40 ans:TestExperienceWorse
Age41-50 ans:TestExperienceWorse
Age51-60 ans:TestExperienceWorse
Age61 ans et plus:TestExperienceWorse

The linear regression analysis shows that respondents aged >40 have the tendency to give at least 7/10 for the NPS (p<0.01).
If the Test result phase is perceived as better than the current one, the scores goes up 3 points (p<0.05). An loss in quality of Testing phase leads to 1 point less, whereas an improvement in the Testing phase in itself seems to be more problematic to understand: if respondents have less somewhere between 21 and 30 years, there is not effect (-9.5 + 9.35). Instead, if they are aged between 41 and 50 years old, the score might be going down 7 points (p>0.40).

Although the model has many variables its explanatory power is fairly good: the Adjusted R2 of the model is 0.41.

Analysis of the comments

The classification rules extracted by the system are …

Linear regression

term estimate std.error statistic p.value
TestResultsÉquivalent aux tests que j’utilise actuellement -0.9067097 1.928899 -0.4700660 0.6439529
TestResultsMeilleur que les tests que j’utilise actuellement -1.3920139 2.013078 -0.6914855 0.4980830
TestResultsPire que les tests que j’utilise actuellement -4.5635792 2.744511 -1.6628024 0.1136662
TestResultsPlutôt meilleur que les tests que j’utilise actuellement 2.0000000 1.683670 1.1878810 0.2503189
TestResultsPlutôt pire que les tests que j’utilise actuellement 0.8932112 2.239007 0.3989318 0.6946365
Age21-30 ans 3.4768775 1.901563 1.8284316 0.0841060
Age31-40 ans 1.4045258 2.178954 0.6445871 0.5273250
Age41-50 ans 8.8969125 2.167393 4.1048905 0.0006649
Age51-60 ans 8.5635792 2.167393 3.9510960 0.0009365
Age61 ans et plus 6.9062367 2.131493 3.2400927 0.0045435
TestExperienceMeilleur que les tests que j’utilise actuellement -1.5635792 2.167393 -0.7214100 0.4799239
TestExperiencePlutôt meilleur que les tests que j’utilise actuellement -9.5635792 2.167393 -4.4124797 0.0003361
TestExperiencePlutôt pire que les tests que j’utilise actuellement -2.9346822 2.259378 -1.2988895 0.2103752
nouveau 3.4578047 1.347550 2.5659931 0.0194382
trop -4.5770156 1.090569 -4.1969053 0.0005419
Age21-30 ans:TestExperienceMeilleur que les tests que j’utilise actuellement 0.3819587 2.626778 0.1454096 0.8860034
Age31-40 ans:TestExperienceMeilleur que les tests que j’utilise actuellement
Age41-50 ans:TestExperienceMeilleur que les tests que j’utilise actuellement
Age51-60 ans:TestExperienceMeilleur que les tests que j’utilise actuellement
Age61 ans et plus:TestExperienceMeilleur que les tests que j’utilise actuellement
Age21-30 ans:TestExperiencePlutôt meilleur que les tests que j’utilise actuellement 11.6801918 2.345541 4.9797431 0.0000970
Age31-40 ans:TestExperiencePlutôt meilleur que les tests que j’utilise actuellement
Age41-50 ans:TestExperiencePlutôt meilleur que les tests que j’utilise actuellement 6.1974318 2.479674 2.4992926 0.0223408
Age51-60 ans:TestExperiencePlutôt meilleur que les tests que j’utilise actuellement
Age61 ans et plus:TestExperiencePlutôt meilleur que les tests que j’utilise actuellement
Age21-30 ans:TestExperiencePlutôt pire que les tests que j’utilise actuellement
Age31-40 ans:TestExperiencePlutôt pire que les tests que j’utilise actuellement
Age41-50 ans:TestExperiencePlutôt pire que les tests que j’utilise actuellement
Age51-60 ans:TestExperiencePlutôt pire que les tests que j’utilise actuellement
Age61 ans et plus:TestExperiencePlutôt pire que les tests que j’utilise actuellement

The new linear regression analysis confirms that respondents aged >40 have the tendency to give at least 7/10 for the NPS (p<0.01).
If the Test result phase is perceived as better than the current one, the scores goes up 3 points (p<0.05). An loss in quality of Testing phase leads to 1 point less, whereas an improvement in the Testing phase in itself seems to be more problematic to understand: if respondents have less somewhere between 21 and 30 years, there is not effect (-9.5 + 9.35). Instead, if they are aged between 41 and 50 years old, the score might be going down 7 points (p>0.40).

Although the model has many variables its explanatory power is fairly good: the Adjusted R2 of the model is 0.71.

Appendix: Collected data

Before During After WTP NPS NPS_Fact Age Sex Vaccine
Same Same Better 80 3 Detractor <20 ans Homme Oui
Better Worse Better 100 7 Neutral 21-30 ans Homme Oui
Better Better Better 50 5 Detractor 41-50 ans Femme Oui
Same Same Better 100 8 Neutral 21-30 ans Femme Non
Same Same Same 100 7 Neutral 21-30 ans Homme Non
Same Worse Worse 15 0 Detractor 21-30 ans Femme Oui
Same Worse Better 100 10 Supporter 51-60 ans Homme Oui
Same Better Better 100 8 Neutral 21-30 ans Homme Non
Same Same Same 20 4 Detractor 21-30 ans Homme Non
Same Same Worse 100 1 Detractor 21-30 ans Homme Oui
Worse Same Worse 130 5 Detractor 21-30 ans Homme Oui
Same Better Same 15 1 Detractor 21-30 ans Homme Non
Same Same Same 0 0 Detractor 21-30 ans Homme Oui
Better Better Better 150 8 Neutral 21-30 ans Homme Oui
Same Same Better 50 6 Detractor 21-30 ans Femme Oui
Better Worse Same 50 2 Detractor 21-30 ans Homme Oui
Same Better Better 30 8 Neutral 41-50 ans Femme Oui
Same Better Better 30 3 Detractor 21-30 ans Femme Non
Same Better Worse 30 0 Detractor 41-50 ans Homme Oui
Same Same Worse 70 2 Detractor 31-40 ans Homme Oui
Same Same Worse 150 10 Supporter 51-60 ans Femme Oui
Same Same Worse 150 7 Neutral 41-50 ans Homme Non
Same Same Worse 80 4 Detractor 31-40 ans Femme Oui
Same Same Same 139 10 Supporter 41-50 ans Femme Oui
Same Better Same 80 8 Neutral 21-30 ans Homme Oui
Better Same Better 0 5 Detractor 31-40 ans Homme Oui
Same Better Better 0 2 Detractor 51-60 ans Homme Oui
Same Same Worse 100 4 Detractor 61 ans et plus Femme Oui
Same Same Worse 50 7 Neutral 61 ans et plus Homme Oui
Worse Same Same 50 7 Neutral 51-60 ans Homme Non
Same Same Worse 60 5 Detractor 51-60 ans Homme Non
Worse Same Worse 70 8 Neutral 51-60 ans Femme Non
Same Same Same 100 9 Supporter 61 ans et plus Homme Oui
Worse Same Worse 50 9 Supporter 41-50 ans Homme Oui
Same Same Worse 100 10 Supporter 61 ans et plus Homme Oui

Appendix: Max WTP and WTP