Email : ardifoyudistio@gmail.com
RPubs : https://rpubs.com/ardifo/
Jurusan : Statistika
Address : ARA Center, Matana University Tower
Jl. CBD Barat Kav, RT.1, Curug Sangereng, Kelapa Dua, Tangerang, Banten 15810.
# list untuk menyimpan 5 orng teman dekat
= list("Albert","Julian","Khefas","Jefrry","Sherly")
list1 print(list1)
## [[1]]
## [1] "Albert"
##
## [[2]]
## [1] "Julian"
##
## [[3]]
## [1] "Khefas"
##
## [[4]]
## [1] "Jefrry"
##
## [[5]]
## [1] "Sherly"
# satu orang teman paling dekat
= list("Albert","Julian","Khefas","Jefrry","Sherly")
list2 print(list2[5])
## [[1]]
## [1] "Sherly"
# mengganti teman yang tidak disuka dengan teman baru
= list("Albert","Julian","Khefas","Jefrry","Sherly")
list3 3] = "Angel"
list3[print(list3)
## [[1]]
## [1] "Albert"
##
## [[2]]
## [1] "Julian"
##
## [[3]]
## [1] "Angel"
##
## [[4]]
## [1] "Jefrry"
##
## [[5]]
## [1] "Sherly"
= as.logical(c(list3)) d5
# menghitung jumlah teman yang ada dalam list
length(list3)
## [1] 5
library(sets)
# buatlah Tuple dengan 5 item didalamnya
library(sets) # panggil library sets terlebih dahulu
= tuple() # membuat tuple nol
tuble0 = tuple("Anjing","Sapi") # Membuat isi tuple 2 item
tuple3 = tuple("Ayam", "Menggoreng", "Masak", "Minum", "Makan") # membuat 5 tuple dengan 5 item di dalam nya tuple5
# cara mengakses tuple
= tuple("Ayam", "Menggoreng", "Masak", "Minum", "Mencuci")
tuple5 print(tuple5[5]) # Mengakses nilai 5 pada tuple5
## ("Mencuci")
# melakukan Slicing Nilai Tuple
print(tuple5[4:5]) # Memotong tuple 5 berdasarkan order
## ("Minum", "Mencuci")
# Nestled Tuple
= rep(tuple5, 3) # Mengisi tuple7 dengan tuple5 dan diulang 3 kali
tuple7 = c(tuple5, tuple3) # Mengisi tuple8 dengan tuple5 dan tuple3
tuple8
print(tuple7)
## ("Ayam", "Menggoreng", "Masak", "Minum", "Mencuci", "Ayam",
## "Menggoreng", "Masak", "Minum", "Mencuci", "Ayam", "Menggoreng",
## "Masak", "Minum", "Mencuci")
print(tuple8)
## ("Ayam", "Menggoreng", "Masak", "Minum", "Mencuci", "Anjing", "Sapi")
# unpacking sequence
= tuple("Ayam", "Menggoreng", "Masak", "Minum", "Makan")
tuple5 names(tuple5) = c("index1", "index2", "index3", "index4", "index5")
print(tuple5)
## (index1 = "Ayam", index2 = "Menggoreng", index3 = "Masak", index4 =
## "Minum", index5 = "Makan")
library(Dict)
##
## Attaching package: 'Dict'
## The following object is masked from 'package:sets':
##
## %>%
= dict(
lopo nama = "Ardifo Okta Yudistio ",
asal = "Katingan",
hobi = list("futsal", "beladiri", "menjelajah alam"),
menikah = FALSE,
sosmed = tuple(instagram = "Ardifo Syaa",
twitter = "Ardifo Syaa"
)
)
# mengakses suatu item dari Dictionary
cat("Nama saya adalah:", lopo$get('nama')) # Mengakses nama pada dictionary lopo
## Nama saya adalah: Ardifo Okta Yudistio
print(lopo$get('sosmed')['instagram'])
## (instagram = "Ardifo Syaa")
# mengubah nilai item dict
"nama"] = "Ardifo Sya'a" # Mengubah nilai item dictionary
lopo[print(lopo$get('nama'))
## [1] "Ardifo Sya'a"
# menambah item ke dict
$add(umur= 19L) #
lopoprint(lopo)
## # A tibble: 6 x 2
## key value
## <chr> <list>
## 1 asal <chr [1]>
## 2 hobi <list [3]>
## 3 menikah <lgl [1]>
## 4 nama <chr [1]>
## 5 sosmed <tuple>
## 6 umur <int [1]>
# menghapus file dari dict
$remove("sosmed") # Mengapus item sosmed pada dictionary
lopo
print(lopo)
## # A tibble: 5 x 2
## key value
## <chr> <list>
## 1 asal <chr [1]>
## 2 hobi <list [3]>
## 3 menikah <lgl [1]>
## 4 nama <chr [1]>
## 5 umur <int [1]>
<- data.frame(kode = c (1:5),
df1_R nama = c("Julian","Vanessa","Jeffry","Nikita","Angel"),
gaji = c("623.3","515.2","611.0","729.0","834.25"),
mulai_kerja = as.Date(c("2022-01-01","2022-09-23","2022-11-15","2022-05-11","2022-03-27")),
divisi = c("DS","BA","BA","DA","DA"), stringsAsFactors = F)
print(df1_R)
## kode nama gaji mulai_kerja divisi
## 1 1 Julian 623.3 2022-01-01 DS
## 2 2 Vanessa 515.2 2022-09-23 BA
## 3 3 Jeffry 611.0 2022-11-15 BA
## 4 4 Nikita 729.0 2022-05-11 DA
## 5 5 Angel 834.25 2022-03-27 DA
<- data.frame(kode = c (6:10),
df2_R nama = c("Ardifo","Sherly","Khefas","Jocelyn","Bakti"),
gaji = c("578.0","722.5","632.8","632.8","632.8"),
mulai_kerja = as.Date(c("2022-05-21","2022-07-30","2022-06-17","2022-07-30","2022-09-03")),
divisi = c("Actuaris","Actuaris","CA","DE","Lecturer"), stringsAsFactors = F)
print(df2_R)
## kode nama gaji mulai_kerja divisi
## 1 6 Ardifo 578.0 2022-05-21 Actuaris
## 2 7 Sherly 722.5 2022-07-30 Actuaris
## 3 8 Khefas 632.8 2022-06-17 CA
## 4 9 Jocelyn 632.8 2022-07-30 DE
## 5 10 Bakti 632.8 2022-09-03 Lecturer
typeof(df1_R) # Cek tipe data
## [1] "list"
class(df1_R) # Cek tipe data
## [1] "data.frame"
2,4] # Ekstrak elemen di baris ke-2 dan kolom ke-4 df1_R[
## [1] "2022-09-23"
$nama # Ekstrak spesifik kolom ('nama') df1_R
## [1] "Julian" "Vanessa" "Jeffry" "Nikita" "Angel"
c('gaji','divisi')] # Ekstrak spesifik kolom ('gaji','divisi') df1_R[,
## gaji divisi
## 1 623.3 DS
## 2 515.2 BA
## 3 611.0 BA
## 4 729.0 DA
## 5 834.25 DA
1:3] # Ekstrak 3 baris pertama df1_R df1_R[ ,
## kode nama gaji
## 1 1 Julian 623.3
## 2 2 Vanessa 515.2
## 3 3 Jeffry 611.0
## 4 4 Nikita 729.0
## 5 5 Angel 834.25
1:2, ] # Ekstrak 2 kolom pertama df1_R df1_R[
## kode nama gaji mulai_kerja divisi
## 1 1 Julian 623.3 2022-01-01 DS
## 2 2 Vanessa 515.2 2022-09-23 BA
subset(df1_R, select=c(1:5)) # Ekstrak kolom 1 sampai kolom 5
## kode nama gaji mulai_kerja divisi
## 1 1 Julian 623.3 2022-01-01 DS
## 2 2 Vanessa 515.2 2022-09-23 BA
## 3 3 Jeffry 611.0 2022-11-15 BA
## 4 4 Nikita 729.0 2022-05-11 DA
## 5 5 Angel 834.25 2022-03-27 DA
subset(df1_R, select=c(2,3)) # Ekstrak kolom tertentu
## nama gaji
## 1 Julian 623.3
## 2 Vanessa 515.2
## 3 Jeffry 611.0
## 4 Nikita 729.0
## 5 Angel 834.25
subset(df1_R, select = divisi) # Ekstrak spesifik kolom divisi
## divisi
## 1 DS
## 2 BA
## 3 BA
## 4 DA
## 5 DA
subset(df1_R, select = 4) # Ekstrak spesifik kolom 4
## mulai_kerja
## 1 2022-01-01
## 2 2022-09-23
## 3 2022-11-15
## 4 2022-05-11
## 5 2022-03-27
summary(df1_R)
## kode nama gaji mulai_kerja
## Min. :1 Length:5 Length:5 Min. :2022-01-01
## 1st Qu.:2 Class :character Class :character 1st Qu.:2022-03-27
## Median :3 Mode :character Mode :character Median :2022-05-11
## Mean :3 Mean :2022-06-09
## 3rd Qu.:4 3rd Qu.:2022-09-23
## Max. :5 Max. :2022-11-15
## divisi
## Length:5
## Class :character
## Mode :character
##
##
##
<-df1_R # Merubah nama data frame df1_R menjadi df2_R
df2_Rnames(df2_R)<-c("Kode", # Merubah nama variable pada data frame df2_R
"Nama",
"Gaji",
"Mulai Bekerja",
"Divisi")
print(df2_R)
## Kode Nama Gaji Mulai Bekerja Divisi
## 1 1 Julian 623.3 2022-01-01 DS
## 2 2 Vanessa 515.2 2022-09-23 BA
## 3 3 Jeffry 611.0 2022-11-15 BA
## 4 4 Nikita 729.0 2022-05-11 DA
## 5 5 Angel 834.25 2022-03-27 DA