set.seed(123)
poblacion <- rnorm(n = 1000, mean = 45.2, sd = 11.2)
set.seed(123)
muestra <- sample(x = poblacion, size = 100, replace = TRUE)
mean(muestra)
## [1] 43.75853
\[H_0: \mu = 45.2 \\ H_1: \mu \neq 45.2\]
t.test(x = muestra,
mu = 45.2,
alternative = "two.sided",
conf.level = 0.95)
##
## One Sample t-test
##
## data: muestra
## t = -1.2649, df = 99, p-value = 0.2089
## alternative hypothesis: true mean is not equal to 45.2
## 95 percent confidence interval:
## 41.49741 46.01965
## sample estimates:
## mean of x
## 43.75853
library(tidyverse)
library(broom)
set.seed(123)
prueba <- tibble(muestra_num = 1:100) %>%
mutate(muestra = map(.x = muestra_num, .f = ~sample(
x = poblacion,
size = 100,
replace = TRUE
)),
estimado = map(.x = muestra, .f = ~t.test(
x = .x,
mu = 45.2,
alternative = "two.sided",
conf.level = 0.95
)),
estimado_tidy = map(.x = estimado, .f = tidy)) %>%
unnest(estimado_tidy)
prueba
## # A tibble: 100 Ć 11
## muestra_num muestra estimado estimate statistic p.value parameter conf.low
## <int> <list> <list> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 <dbl [100]> <htest> 43.8 -1.26 0.209 99 41.5
## 2 2 <dbl [100]> <htest> 46.5 1.24 0.218 99 44.4
## 3 3 <dbl [100]> <htest> 47.2 1.77 0.0795 99 45.0
## 4 4 <dbl [100]> <htest> 46.2 1.10 0.272 99 44.4
## 5 5 <dbl [100]> <htest> 45.5 0.254 0.800 99 43.4
## 6 6 <dbl [100]> <htest> 44.8 -0.392 0.696 99 42.6
## 7 7 <dbl [100]> <htest> 46.0 0.776 0.440 99 43.9
## 8 8 <dbl [100]> <htest> 47.5 2.04 0.0442 99 45.3
## 9 9 <dbl [100]> <htest> 45.8 0.546 0.586 99 43.5
## 10 10 <dbl [100]> <htest> 46.7 1.25 0.213 99 44.3
## # ⦠with 90 more rows, and 3 more variables: conf.high <dbl>, method <chr>,
## # alternative <chr>
prueba %>%
ggplot(mapping = aes(x = muestra_num, y = estimate)) +
geom_point() +
geom_errorbar(mapping = aes(ymin = conf.low, ymax = conf.high)) +
geom_hline(yintercept = 45.2, color = "red", lty = 2)
prueba %>%
ggplot(mapping = aes(x = muestra_num, y = p.value)) +
geom_point() +
geom_hline(yintercept = 0.05, color = "red", lty = 2)