Elaborar un análisis descriptivo de la variable promedios de alumnos de una muestra de la población a partir de la lectura de un archivo promedios.csv.
Importar datos de promedios en la dirección: https://raw.githubusercontent.com/rpizarrog/Trabajos-en-R-AD2021/main/promedios.csv.
Mostrar solo los primeros diez registros y los ultimos diez registros.
Identificar la variable de interés llamada promedio.
Determinar una muestra de 300 registros de la población. La población es todos los registros del archivo y la muestra es una parte de la población.
Identificar la media de la población.
Identificar la media de la muestra.
Comparar las medias aritméticas.
Crear un histograma de los datos.
Realizar interpretación.
poblacion.alumnos<-read.csv("https://raw.githubusercontent.com/rpizarrog/Trabajos-en-R-AD2021/main/promedios.csv")
Con head() y tail()
head(poblacion.alumnos, 10)
## no promedios
## 1 1 91.60891
## 2 2 86.68564
## 3 3 84.06292
## 4 4 80.94624
## 5 5 88.49800
## 6 6 85.42097
## 7 7 81.11855
## 8 8 78.97463
## 9 9 75.81317
## 10 10 86.60781
tail(poblacion.alumnos, 10)
## no promedios
## 5591 5591 83.61431
## 5592 5592 78.48419
## 5593 5593 79.59696
## 5594 5594 83.86262
## 5595 5595 81.04476
## 5596 5596 87.74938
## 5597 5597 86.64384
## 5598 5598 88.44429
## 5599 5599 88.19806
## 5600 5600 83.74940
con str() se identifica las variables y el tipo de datos del conjunto de datos
str(poblacion.alumnos)
## 'data.frame': 5600 obs. of 2 variables:
## $ no : int 1 2 3 4 5 6 7 8 9 10 ...
## $ promedios: num 91.6 86.7 84.1 80.9 88.5 ...
Se utiliza la funcion sample() para determinar la muestra, primero se determina con una variable llamada cuantas o registros que serán muestreados, y a partir de ella se determina la muestra.
Determinando la variable N el total de registros de la población
N<-nrow(poblacion.alumnos)
Se determinan los registros de la muestra
cuales<-sample(x=1:N, 300, replace=FALSE)
cuales
## [1] 5091 847 1716 3557 2093 1179 547 4091 379 4517 4213 3502 2820 4963 1599
## [16] 3578 4358 2946 2643 687 2656 1042 1162 1268 1082 1139 3978 117 755 126
## [31] 3641 2747 3318 1603 5219 2299 2328 3975 5425 4746 2938 4863 1463 4975 3298
## [46] 1293 2200 550 4758 4794 4564 1824 4696 3399 5080 2331 1682 3994 3719 3187
## [61] 2031 5067 5197 246 2113 4463 1825 5477 911 3742 2756 870 4587 5116 122
## [76] 3646 40 285 2798 2168 4677 4153 3550 2157 2967 985 1439 3474 2917 4637
## [91] 2046 4088 3749 853 3153 2919 2121 3471 4431 723 859 368 4951 4319 28
## [106] 3925 4338 3420 4352 2117 1635 1769 5232 3859 1730 1559 2376 366 2413 294
## [121] 2799 85 1326 3531 3492 3169 1387 3059 2915 1236 3125 4873 583 3689 5215
## [136] 3262 3064 5322 4259 5412 2063 5502 838 2119 2334 1804 969 1267 1736 3196
## [151] 3930 1158 3805 2834 26 1221 81 728 5578 711 1980 2232 752 2672 2886
## [166] 3448 1258 3850 4388 4841 2253 4485 4129 3157 5377 3096 3995 6 2326 2250
## [181] 1207 4642 2166 1094 2793 4714 881 2171 3194 3731 4104 127 3904 2807 2370
## [196] 5591 5404 1663 296 1518 524 899 332 4710 252 5180 2398 2053 4819 2329
## [211] 2840 49 1822 322 2006 2718 592 3501 632 1367 3787 692 3837 5 3971
## [226] 749 733 3063 3293 1579 3932 2337 5599 4634 5529 3468 1676 5571 3112 482
## [241] 358 2912 3868 2210 511 2106 4948 5158 1811 460 3319 914 795 4111 1272
## [256] 729 1845 2691 2890 173 12 1621 4326 1954 4180 560 1169 3685 5082 1884
## [271] 5243 2998 469 4603 2750 3005 2694 2794 1023 2902 3185 1011 2739 5127 4842
## [286] 5058 703 4112 3600 3461 2382 3092 112 3633 4119 193 2782 1322 1634 3354
Se determina la muestra
muestra.alumnos<-poblacion.alumnos[cuales, ] #las dos columnas
head(muestra.alumnos)
## no promedios
## 5091 5091 83.69250
## 847 847 83.41516
## 1716 1716 82.79298
## 3557 3557 80.58972
## 2093 2093 84.48893
## 1179 1179 86.35174
tail(muestra.alumnos)
## no promedios
## 4119 4119 87.44887
## 193 193 79.74357
## 2782 2782 87.87838
## 1322 1322 77.63715
## 1634 1634 82.34704
## 3354 3354 85.84131
Se obtiene la media aritmética de la variable promedio de toda la población con la función mean().
media.poblacion<-mean(poblacion.alumnos$promedios)
media.poblacion
## [1] 84.01415
Se obtiene la media aritmética de la variable promedio de la muestra con la función mean().
media.muestra<-mean(muestra.alumnos$promedios)
media.muestra
## [1] 84.19067
En la ejecución de este caso tomamos el archivo que se encuentra en una dirección, con la finalidad de poder trabajar con el.
Después de haber importado los datos, se abrió paso a optar por la selección de los primeros 10 y los últimos 10 como desarrollo de la práctica. Cabe recalcar que en total fueron alrrededor de 5600 registros, de los cuales se toma una muestra de 300 registros para obtener la media de ella, siendo esta 84.26917. También se determina la media de la población que arroja como resultado 84.01415.