la normalité va nous permettre de choisir le type de test pour comparer les données Un test de shapiro pour valider la normalité si la p-value est<0.05 la normalité n’est pas accepté on fait donc un test de Wilcoxon Si la normalité est respecté on fait le test de Student
shapiro.test(Ig$age_inclusion[Ig$IgG4_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$age_inclusion[Ig$IgG4_Exces == "Oui"]
## W = 0.95799, p-value = 0.2929
wilcoxon
shapiro.test(Ig$age_inclusion[Ig$IgG4_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$age_inclusion[Ig$IgG4_Exces == "Non"]
## W = 0.98012, p-value = 0.002618
Student
shapiro.test(Ig$IMC[Ig$IgG4_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$IMC[Ig$IgG4_Exces == "Oui"]
## W = 0.85252, p-value = 0.002436
la normalité est acceptée: T-test de Student
shapiro.test(Ig$IMC[Ig$IgG4_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$IMC[Ig$IgG4_Exces == "Non"]
## W = 0.85616, p-value = 1.537e-10
student
shapiro.test(Ig$Nb_Exa_an.sans_biotherapie[Ig$IgG4_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Nb_Exa_an.sans_biotherapie[Ig$IgG4_Exces == "Oui"]
## W = 0.85872, p-value = 0.00211
shapiro.test(Ig$Nb_Exa_an.sans_biotherapie[Ig$IgG4_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Nb_Exa_an.sans_biotherapie[Ig$IgG4_Exces == "Non"]
## W = 0.39678, p-value < 2.2e-16
Student
shapiro.test(Ig$Corticoïde.systémique..dose.[Ig$IgG4_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Corticoïde.systémique..dose.[Ig$IgG4_Exces == "Oui"]
## W = 0.54117, p-value = 6.629e-08
shapiro.test(Ig$Corticoïde.systémique..dose.[Ig$IgG4_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Corticoïde.systémique..dose.[Ig$IgG4_Exces == "Non"]
## W = 0.52639, p-value < 2.2e-16
Student
shapiro.test(Ig$CSI_µg[Ig$IgG4_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$CSI_µg[Ig$IgG4_Exces == "Oui"]
## W = 0.82949, p-value = 0.0004644
la normalité est acceptée : Student
shapiro.test(Ig$CSI_µg[Ig$IgG4_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$CSI_µg[Ig$IgG4_Exces == "Non"]
## W = 0.87904, p-value = 2.986e-12
Student
shapiro.test(Ig$Montélukast[Ig$IgG4_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Montélukast[Ig$IgG4_Exces == "Oui"]
## W = 0.54089, p-value = 3.093e-08
shapiro.test(Ig$Montélukast[Ig$IgG4_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Montélukast[Ig$IgG4_Exces == "Non"]
## W = 0.61725, p-value < 2.2e-16
Student
shapiro.test(Ig$Rep_biotherapie_GETE[Ig$IgG4_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Rep_biotherapie_GETE[Ig$IgG4_Exces == "Oui"]
## W = 0.61811, p-value = 2.399e-07
la normalité est acceptée : t-test de Student
shapiro.test(Ig$Rep_biotherapie_GETE[Ig$IgG4_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Rep_biotherapie_GETE[Ig$IgG4_Exces == "Non"]
## W = 0.64998, p-value < 2.2e-16
student
shapiro.test(Ig$VEMS_pre_B2_L[Ig$IgG4_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$VEMS_pre_B2_L[Ig$IgG4_Exces == "Oui"]
## W = 0.95499, p-value = 0.3462
Wilcoxon
shapiro.test(Ig$VEMS_pre_B2_L[Ig$IgG4_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$VEMS_pre_B2_L[Ig$IgG4_Exces == "Non"]
## W = 0.97809, p-value = 0.003425
Student
shapiro.test(Ig$VEMS_PreB2_Pct[Ig$IgG4_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$VEMS_PreB2_Pct[Ig$IgG4_Exces == "Oui"]
## W = 0.95197, p-value = 0.2578
wilcoxon
shapiro.test(Ig$VEMS_PreB2_Pct[Ig$IgG4_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$VEMS_PreB2_Pct[Ig$IgG4_Exces == "Non"]
## W = 0.98285, p-value = 0.01491
Student
shapiro.test(Ig$Tiffenau[Ig$IgG4_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Tiffenau[Ig$IgG4_Exces == "Oui"]
## W = 0.9791, p-value = 0.8542
Wilcoxon
shapiro.test(Ig$Tiffenau[Ig$IgG4_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Tiffenau[Ig$IgG4_Exces == "Non"]
## W = 0.98898, p-value = 0.1328
Wilcoxon
shapiro.test(Ig$FeNo[Ig$IgG4_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$FeNo[Ig$IgG4_Exces == "Non"]
## W = 0.7917, p-value = 6.335e-12
Student
shapiro.test(Ig$FeNo[Ig$IgG4_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$FeNo[Ig$IgG4_Exces == "Oui"]
## W = 0.81347, p-value = 0.005503
Student
shapiro.test(Ig$PNE_G_L[Ig$IgG4_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$PNE_G_L[Ig$IgG4_Exces == "Oui"]
## W = 0.75662, p-value = 2.007e-05
Student
shapiro.test(Ig$PNE_G_L[Ig$IgG4_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$PNE_G_L[Ig$IgG4_Exces == "Non"]
## W = 0.75389, p-value < 2.2e-16
Student
shapiro.test(Ig$IgE_Total[Ig$IgG4_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$IgE_Total[Ig$IgG4_Exces == "Oui"]
## W = 0.81498, p-value = 0.000672
Student
shapiro.test(Ig$IgE_Total[Ig$IgG4_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$IgE_Total[Ig$IgG4_Exces == "Non"]
## W = 0.29522, p-value < 2.2e-16
student
wilcox.test(Ig$age_inclusion~Ig$IgG4_Exces, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$age_inclusion by Ig$IgG4_Exces
## W = 2681, p-value = 0.09145
## alternative hypothesis: true location shift is not equal to 0
t.test(Ig$IMC~Ig$IgG4_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$IMC by Ig$IgG4_Exces
## t = 0.60936, df = 166, p-value = 0.5431
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.101604 3.977993
## sample estimates:
## mean in group Non mean in group Oui
## 26.70486 25.76667
t.test(Ig$Nb_Exa_an.sans_biotherapie~Ig$IgG4_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$Nb_Exa_an.sans_biotherapie by Ig$IgG4_Exces
## t = 0.12858, df = 207, p-value = 0.8978
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.262506 3.717739
## sample estimates:
## mean in group Non mean in group Oui
## 4.573770 4.346154
Le test ne met pas en évidence une relation significative
t.test(Ig$Corticoïde.systémique..dose.~Ig$IgG4_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$Corticoïde.systémique..dose. by Ig$IgG4_Exces
## t = 0.78504, df = 229, p-value = 0.4332
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.262168 7.583181
## sample estimates:
## mean in group Non mean in group Oui
## 6.295122 4.134615
Le test ne met pas en évidence une relation significative
t.test(Ig$CSI_µg~Ig$IgG4_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$CSI_µg by Ig$IgG4_Exces
## t = -0.50734, df = 245, p-value = 0.6124
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -640.3216 378.0226
## sample estimates:
## mean in group Non mean in group Oui
## 1591.073 1722.222
t.test(Ig$Montélukast~Ig$IgG4_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$Montélukast by Ig$IgG4_Exces
## t = 1.4054, df = 254, p-value = 0.1611
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.05456001 0.32648983
## sample estimates:
## mean in group Non mean in group Oui
## 0.3859649 0.2500000
t.test(Ig$Rep_biotherapie_GETE~Ig$IgG4_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$Rep_biotherapie_GETE by Ig$IgG4_Exces
## t = 0.59526, df = 242, p-value = 0.5522
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.4444280 0.8293486
## sample estimates:
## mean in group Non mean in group Oui
## 1.0138889 0.8214286
wilcox.test(Ig$VEMS_pre_B2_L~Ig$IgG4_Exces, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$VEMS_pre_B2_L by Ig$IgG4_Exces
## W = 2192.5, p-value = 0.538
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(Ig$VEMS_PreB2_Pct~Ig$IgG4_Exces, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$VEMS_PreB2_Pct by Ig$IgG4_Exces
## W = 2716.5, p-value = 0.7437
## alternative hypothesis: true location shift is not equal to 0
wilcox.test(Ig$Tiffenau~Ig$IgG4_Exces, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$Tiffenau by Ig$IgG4_Exces
## W = 2714.5, p-value = 0.6207
## alternative hypothesis: true location shift is not equal to 0
t.test(Ig$FeNo~Ig$IgG4_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$FeNo by Ig$IgG4_Exces
## t = 0.41398, df = 136, p-value = 0.6795
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -14.28481 21.84904
## sample estimates:
## mean in group Non mean in group Oui
## 36.04878 32.26667
t.test(Ig$PNE_G_L~Ig$IgG4_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$PNE_G_L by Ig$IgG4_Exces
## t = -4.4324, df = 233, p-value = 1.436e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.5558400 -0.2137528
## sample estimates:
## mean in group Non mean in group Oui
## 0.3009179 0.6857143
la p value est significative
wilcox.test(Ig$IgE_Total~Ig$IgG4_Exces, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$IgE_Total by Ig$IgG4_Exces
## W = 1134.5, p-value = 0.003672
## alternative hypothesis: true location shift is not equal to 0
la p-value est dans la limite de la significativité
comp_qual <- read.csv("C:/Users/mallah.s/Desktop/StatsTheses/Mauro anthony/comp_qual.csv", sep=";", stringsAsFactors=TRUE)
Pour le test de liaison entre deux variables qualitative: verification de la normalité -> selon la validation de la normalité :test de Chi2 ou test de fisher
le test du χ2 d’indépendance sert à étudier la liaison entre deux caractères qualitatifs XetY, lorsque les conditions ne sont pas remplies, il existe des corrections,dans notre cas je vais utiliser le tests exacts de Fisher
xtabs(~Sexe+IgG4_Exces, data=comp_qual)
## IgG4_Exces
## Sexe Non Oui
## F 144 10
## M 85 19
chisq.test(comp_qual$Sexe,comp_qual$IgG4_Exces)$expected
## comp_qual$IgG4_Exces
## comp_qual$Sexe Non Oui
## F 136.68992 17.31008
## M 92.31008 11.68992
chisq.test(comp_qual$Sexe,comp_qual$IgG4_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$Sexe and comp_qual$IgG4_Exces
## X-squared = 8.6281, df = 1, p-value = 0.00331
fisher.test(comp_qual$Sexe,comp_qual$IgG4_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Sexe and comp_qual$IgG4_Exces
## p-value = 0.004528
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 1.343692 8.097948
## sample estimates:
## odds ratio
## 3.203632
xtabs(~Montélukast+IgG4_Exces, data=comp_qual)
## IgG4_Exces
## Montélukast Non Oui
## Non 140 21
## Oui 88 7
chisq.test(comp_qual$Montélukast,comp_qual$IgG4_Exces)$expected
## comp_qual$IgG4_Exces
## comp_qual$Montélukast Non Oui
## Non 143.39062 17.60938
## Oui 84.60938 10.39062
chisq.test(comp_qual$Montélukast,comp_qual$IgG4_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$Montélukast and comp_qual$IgG4_Exces
## X-squared = 1.9753, df = 1, p-value = 0.1599
fisher.test(comp_qual$Montélukast,comp_qual$IgG4_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Montélukast and comp_qual$IgG4_Exces
## p-value = 0.2138
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.1830535 1.3657929
## sample estimates:
## odds ratio
## 0.5315235
xtabs(~Biotherapie+IgG4_Exces, data=comp_qual)
## IgG4_Exces
## Biotherapie Non Oui
## Non 149 19
## Oui 80 10
chisq.test(comp_qual$Biotherapie,comp_qual$IgG4_Exces)$expected
## comp_qual$IgG4_Exces
## comp_qual$Biotherapie Non Oui
## Non 149.11628 18.88372
## Oui 79.88372 10.11628
chisq.test(comp_qual$Biotherapie,comp_qual$IgG4_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$Biotherapie and comp_qual$IgG4_Exces
## X-squared = 0.0023125, df = 1, p-value = 0.9616
fisher.test(comp_qual$Biotherapie,comp_qual$IgG4_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Biotherapie and comp_qual$IgG4_Exces
## p-value = 1
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.3875021 2.3427280
## sample estimates:
## odds ratio
## 0.9803379
xtabs(~Biothérapie_type+IgG4_Exces, data=comp_qual)
## IgG4_Exces
## Biothérapie_type Non Oui
## Benralizumab 6 4
## Dupilumab 3 1
## Mepolizumab 49 3
## Omalixumab 22 2
chisq.test(comp_qual$Biothérapie_type,comp_qual$IgG4_Exces)$expected
## Warning in chisq.test(comp_qual$Biothérapie_type, comp_qual$IgG4_Exces): Chi-
## squared approximation may be incorrect
## comp_qual$IgG4_Exces
## comp_qual$Biothérapie_type Non Oui
## Benralizumab 8.888889 1.1111111
## Dupilumab 3.555556 0.4444444
## Mepolizumab 46.222222 5.7777778
## Omalixumab 21.333333 2.6666667
chisq.test(comp_qual$Biothérapie_type,comp_qual$IgG4_Exces, correct=FALSE)
## Warning in chisq.test(comp_qual$Biothérapie_type, comp_qual$IgG4_Exces, : Chi-
## squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Biothérapie_type and comp_qual$IgG4_Exces
## X-squared = 10.921, df = 3, p-value = 0.01216
fisher.test(comp_qual$Biothérapie_type,comp_qual$IgG4_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Biothérapie_type and comp_qual$IgG4_Exces
## p-value = 0.01538
## alternative hypothesis: two.sided
xtabs(~Tabac+IgG4_Exces, data=comp_qual)
## IgG4_Exces
## Tabac Non Oui
## Actif 25 0
## Non 80 11
## Passif 10 0
## Sevré 73 12
chisq.test(comp_qual$Tabac,comp_qual$IgG4_Exces)$expected
## Warning in chisq.test(comp_qual$Tabac, comp_qual$IgG4_Exces): Chi-squared
## approximation may be incorrect
## comp_qual$IgG4_Exces
## comp_qual$Tabac Non Oui
## Actif 22.274882 2.725118
## Non 81.080569 9.919431
## Passif 8.909953 1.090047
## Sevré 75.734597 9.265403
chisq.test(comp_qual$Tabac,comp_qual$IgG4_Exces, correct=FALSE)
## Warning in chisq.test(comp_qual$Tabac, comp_qual$IgG4_Exces, correct = FALSE):
## Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Tabac and comp_qual$IgG4_Exces
## X-squared = 5.3199, df = 3, p-value = 0.1498
fisher.test(comp_qual$Tabac,comp_qual$IgG4_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Tabac and comp_qual$IgG4_Exces
## p-value = 0.1572
## alternative hypothesis: two.sided
xtabs(~Atopie+IgG4_Exces, data=comp_qual)
## IgG4_Exces
## Atopie Non Oui
## Non 139 21
## Oui 90 8
chisq.test(comp_qual$Atopie,comp_qual$IgG4_Exces)$expected
## comp_qual$IgG4_Exces
## comp_qual$Atopie Non Oui
## Non 142.0155 17.9845
## Oui 86.9845 11.0155
chisq.test(comp_qual$Atopie,comp_qual$IgG4_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$Atopie and comp_qual$IgG4_Exces
## X-squared = 1.4997, df = 1, p-value = 0.2207
fisher.test(comp_qual$Atopie,comp_qual$IgG4_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Atopie and comp_qual$IgG4_Exces
## p-value = 0.3098
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.2161731 1.4591991
## sample estimates:
## odds ratio
## 0.5895024
xtabs(~FeNo_sup_20_ppb+IgG4_Exces, data=comp_qual)
## IgG4_Exces
## FeNo_sup_20_ppb Non Oui
## Non 51 5
## Oui 72 10
chisq.test(comp_qual$FeNo_sup_20_ppb,comp_qual$IgG4_Exces)$expected
## comp_qual$IgG4_Exces
## comp_qual$FeNo_sup_20_ppb Non Oui
## Non 49.91304 6.086957
## Oui 73.08696 8.913043
chisq.test(comp_qual$FeNo_sup_20_ppb,comp_qual$IgG4_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$FeNo_sup_20_ppb and comp_qual$IgG4_Exces
## X-squared = 0.36649, df = 1, p-value = 0.5449
fisher.test(comp_qual$FeNo_sup_20_ppb,comp_qual$IgG4_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$FeNo_sup_20_ppb and comp_qual$IgG4_Exces
## p-value = 0.5917
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.4100341 5.5958576
## sample estimates:
## odds ratio
## 1.413199
xtabs(~PNN_sup_5+IgG4_Exces, data=comp_qual)
## IgG4_Exces
## PNN_sup_5 Non Oui
## Non 92 14
## Oui 116 14
chisq.test(comp_qual$PNN_sup_5,comp_qual$IgG4_Exces)$expected
## comp_qual$IgG4_Exces
## comp_qual$PNN_sup_5 Non Oui
## Non 93.42373 12.57627
## Oui 114.57627 15.42373
chisq.test(comp_qual$PNN_sup_5,comp_qual$IgG4_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$PNN_sup_5 and comp_qual$IgG4_Exces
## X-squared = 0.33199, df = 1, p-value = 0.5645
fisher.test(comp_qual$PNN_sup_5,comp_qual$IgG4_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$PNN_sup_5 and comp_qual$IgG4_Exces
## p-value = 0.6863
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.3322087 1.8968634
## sample estimates:
## odds ratio
## 0.793894
Les deux variable sont independantes
xtabs(~PNE_sup_0.15G_L+IgG4_Exces, data=comp_qual)
## IgG4_Exces
## PNE_sup_0.15G_L Non Oui
## Non 90 8
## Oui 117 20
chisq.test(comp_qual$PNE_sup_0.15G_L,comp_qual$IgG4_Exces)$expected
## comp_qual$IgG4_Exces
## comp_qual$PNE_sup_0.15G_L Non Oui
## Non 86.3234 11.6766
## Oui 120.6766 16.3234
chisq.test(comp_qual$PNE_sup_0.15G_L,comp_qual$IgG4_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$PNE_sup_0.15G_L and comp_qual$IgG4_Exces
## X-squared = 2.2543, df = 1, p-value = 0.1332
fisher.test(comp_qual$PNE_sup_0.15G_L,comp_qual$IgG4_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$PNE_sup_0.15G_L and comp_qual$IgG4_Exces
## p-value = 0.1559
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.7660622 5.2760122
## sample estimates:
## odds ratio
## 1.918012
xtabs(~PNE_sup_0.3.G_L+IgG4_Exces, data=comp_qual)
## IgG4_Exces
## PNE_sup_0.3.G_L Non Oui
## Non 123 10
## Oui 84 18
chisq.test(comp_qual$PNE_sup_0.3.G_L,comp_qual$IgG4_Exces)$expected
## comp_qual$IgG4_Exces
## comp_qual$PNE_sup_0.3.G_L Non Oui
## Non 117.15319 15.84681
## Oui 89.84681 12.15319
chisq.test(comp_qual$PNE_sup_0.3.G_L,comp_qual$IgG4_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$PNE_sup_0.3.G_L and comp_qual$IgG4_Exces
## X-squared = 5.6424, df = 1, p-value = 0.01753
fisher.test(comp_qual$PNE_sup_0.3.G_L,comp_qual$IgG4_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$PNE_sup_0.3.G_L and comp_qual$IgG4_Exces
## p-value = 0.02444
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 1.085738 6.701471
## sample estimates:
## odds ratio
## 2.624659
xtabs(~CRP_sup_5.mg_l+IgG4_Exces, data=comp_qual)
## IgG4_Exces
## CRP_sup_5.mg_l Non Oui
## Non 95 11
## Oui 41 8
chisq.test(comp_qual$CRP_sup_5.mg_l,comp_qual$IgG4_Exces)$expected
## comp_qual$IgG4_Exces
## comp_qual$CRP_sup_5.mg_l Non Oui
## Non 93.00645 12.993548
## Oui 42.99355 6.006452
chisq.test(comp_qual$CRP_sup_5.mg_l,comp_qual$IgG4_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$CRP_sup_5.mg_l and comp_qual$IgG4_Exces
## X-squared = 1.1027, df = 1, p-value = 0.2937
fisher.test(comp_qual$CRP_sup_5.mg_l,comp_qual$IgG4_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$CRP_sup_5.mg_l and comp_qual$IgG4_Exces
## p-value = 0.3025
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.5435065 4.9792874
## sample estimates:
## odds ratio
## 1.679123
xtabs(~IgE_Total_sup_30_kUA_l+IgG4_Exces, data=comp_qual)
## IgG4_Exces
## IgE_Total_sup_30_kUA_l Non Oui
## Non 28 2
## Oui 130 21
chisq.test(comp_qual$IgE_Total_sup_30_kUA_l,comp_qual$IgG4_Exces)$expected
## Warning in chisq.test(comp_qual$IgE_Total_sup_30_kUA_l, comp_qual$IgG4_Exces):
## Chi-squared approximation may be incorrect
## comp_qual$IgG4_Exces
## Non Oui
## Non 26.18785 3.812155
## Oui 131.81215 19.187845
chisq.test(comp_qual$IgE_Total_sup_30_kUA_l,comp_qual$IgG4_Exces, correct=FALSE)
## Warning in chisq.test(comp_qual$IgE_Total_sup_30_kUA_l, comp_qual$IgG4_Exces, :
## Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$IgE_Total_sup_30_kUA_l and comp_qual$IgG4_Exces
## X-squared = 1.1829, df = 1, p-value = 0.2768
fisher.test(comp_qual$IgE_Total_sup_30_kUA_l,comp_qual$IgG4_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$IgE_Total_sup_30_kUA_l and comp_qual$IgG4_Exces
## p-value = 0.377
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.5014243 20.9354270
## sample estimates:
## odds ratio
## 2.253455
xtabs(~Profil_T2+IgG4_Exces, data=comp_qual)
## IgG4_Exces
## Profil_T2 Non Oui
## Neg 76 9
## Pos 39 6
chisq.test(comp_qual$Profil_T2,comp_qual$IgG4_Exces)$expected
## comp_qual$IgG4_Exces
## comp_qual$Profil_T2 Non Oui
## Neg 75.19231 9.807692
## Pos 39.80769 5.192308
chisq.test(comp_qual$Profil_T2,comp_qual$IgG4_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$Profil_T2 and comp_qual$IgG4_Exces
## X-squared = 0.21722, df = 1, p-value = 0.6412
fisher.test(comp_qual$Profil_T2,comp_qual$IgG4_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Profil_T2 and comp_qual$IgG4_Exces
## p-value = 0.7739
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.3527725 4.4267541
## sample estimates:
## odds ratio
## 1.296419
xtabs(~Rep_biotherapie_GETE+IgG4_Exces, data=comp_qual)
## IgG4_Exces
## Rep_biotherapie_GETE Non Oui
## 160 21
## Aggravation 8 1
## Bonne 22 3
## Excellent 4 1
## Faible 26 2
## modérée 9 1
chisq.test(comp_qual$Rep_biotherapie_GETE,comp_qual$IgG4_Exces)$expected
## Warning in chisq.test(comp_qual$Rep_biotherapie_GETE, comp_qual$IgG4_Exces):
## Chi-squared approximation may be incorrect
## comp_qual$IgG4_Exces
## comp_qual$Rep_biotherapie_GETE Non Oui
## 160.655039 20.3449612
## Aggravation 7.988372 1.0116279
## Bonne 22.189922 2.8100775
## Excellent 4.437984 0.5620155
## Faible 24.852713 3.1472868
## modérée 8.875969 1.1240310
chisq.test(comp_qual$Rep_biotherapie_GETE,comp_qual$IgG4_Exces, correct=FALSE)
## Warning in chisq.test(comp_qual$Rep_biotherapie_GETE, comp_qual$IgG4_Exces, :
## Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Rep_biotherapie_GETE and comp_qual$IgG4_Exces
## X-squared = 0.90953, df = 5, p-value = 0.9695
fisher.test(comp_qual$Rep_biotherapie_GETE,comp_qual$IgG4_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Rep_biotherapie_GETE and comp_qual$IgG4_Exces
## p-value = 0.9123
## alternative hypothesis: two.sided