Email             :
RPubs            : https://rpubs.com/sausanramadhani/
Jurusan          : Statistika
Address         : ARA Center, Matana University Tower
                         Jl. CBD Barat Kav, RT.1, Curug Sangereng, Kelapa Dua, Tangerang, Banten 15810.


1 SOAL 1

Membuat Program dengan List R dan Python

  • Buat sebuah list untuk menyimpan 5 orang teman dekatmu
  • Pilihlah satu orang dari list tersebut yang menjadi teman paling dekatmu dengan menggunakan index
  • Gantilah satu orang yang tidak begitu dekat denganmu dengan teman baru yang kamu temui baru-baru ini
  • Bagaimana caranya anda menghitung banyak teman yang ada dalam list tersebut

1.1 Jawaban Soal 1

list1 = list("nadine","riva","david","caroline","vanessa")  # membuat list
print(list1[1])                                             # pilih satu
## [[1]]
## [1] "nadine"
list1 = list("nadine","riva","david","caroline","vanessa")     # suatu list
list1[3] = "rara"                                              # mengganti salah satu nilai
print(list1)
## [[1]]
## [1] "nadine"
## 
## [[2]]
## [1] "riva"
## 
## [[3]]
## [1] "rara"
## 
## [[4]]
## [1] "caroline"
## 
## [[5]]
## [1] "vanessa"
length(list1)   # menghitung jumlah isi list
## [1] 5

2 SOAL 2

Buatlah contoh menyimpan sekumpulan tuple dengan R dan Python, dengan mengikuti instruksi berikut:

  • Buatlah Tuple dengan 5 item didalamnya
  • Perlihatkan cara Mengakses Nilai Tuple
  • Bagaimana anda melakukan Slicing Nilai Tuple
  • Nested Tuple
  • Unpacking Sequence

2.1 Jawaban Soal 2

library(sets)
tuple1 = tuple("roti tawar","roti manis","roti sobek","roti buaya","roti gandum")       # membuat tuple
print(tuple1[3])                                                                        # mengakses nilai tuple
## ("roti sobek")
print(tuple1[1:4])                                                                      # slicing nilai tuple
## ("roti tawar", "roti manis", "roti sobek", "roti buaya")
library(sets)
tuple2 = tuple("selai coklat kacang", "selai stroberi", "selai nanas")
tuple3 = c(tuple1, tuple2)                                                              # nested tuple
print(tuple3)
## ("roti tawar", "roti manis", "roti sobek", "roti buaya", "roti gandum",
##  "selai coklat kacang", "selai stroberi", "selai nanas")

3 SOAL 3

Buatlah contoh menyimpan sekumpulan Dictionary dengan R dan Python, yang memuat type data float, integer, character, dan logical, list, tuple, dictionary dengan mengikuti instruksi berikut:

  • Akses suatu nilai Item dari Dictionary
  • Ubah suatu Nilai Item pada Dictionary
  • Menambahkan Item ke Dictionary
  • Menghapus Item dari Dictionary

3.1 Jawaban Soal 3

library(Dict)                                                 # menyimpan sekumpulan dictionary
## 
## Attaching package: 'Dict'
## The following object is masked from 'package:sets':
## 
##     %>%
dentumserabut = dict(
  nama = "Sausan Ramadhani",
  umur = as.integer(19),
  hobi = list("futsal", "menonton film", "memasak"),
  menikah = FALSE,
  sosmed = tuple(instagram= "saram.05",
                 tiktok= "sausanramadhani")
)
cat("Nama saya adalah :", dentumserabut$get('nama'))          # akses suatu nilai item
## Nama saya adalah : Sausan Ramadhani
print(dentumserabut$get('sosmed')['instagram'])               # akses suatu nilai item
## (instagram = "saram.05")
dentumserabut['nama'] = "Mugemi Sausan Ramadhani"             # mengubah suatu nilai
print(dentumserabut$get('nama'))
## [1] "Mugemi Sausan Ramadhani"
dentumserabut ['tinggi badan'] = "159"                        # menambahkan suatu nilai
print(dentumserabut$get('tinggi badan'))
## [1] "159"
dentumserabut$remove("hobi")                                  # menghapus suatu nilai
print(dentumserabut$get('hobi'))
## NULL

4 SOAL 4

Silahkan untuk menemukan operasi Pengindeksan, Pengirisan, dan Subsetting Data Frame dengan Menggunkan R dan Python.

4.1 Jawaban Soal 4

# membuat suatu data frame
df1_R <- data.frame(kode = c (1:5),
                    nama = c("Hendri","Maman","Soni","Jamrud","Tulus"),
                    gaji = c(762, 323, 452, 652, 231),
             mulai_kerja = as.Date(c("2035-03-09","2035-07-02","2035-02-03","2035-04-06","2035-02-02")),
                  divisi = c ("BA","DS","DS","DA","BA"), stringAsFactors = F)
print(df1_R)
##   kode   nama gaji mulai_kerja divisi stringAsFactors
## 1    1 Hendri  762  2035-03-09     BA           FALSE
## 2    2  Maman  323  2035-07-02     DS           FALSE
## 3    3   Soni  452  2035-02-03     DS           FALSE
## 4    4 Jamrud  652  2035-04-06     DA           FALSE
## 5    5  Tulus  231  2035-02-02     BA           FALSE
# operasi pengindeksan, Pengirisan, dan Subsetting Data Frame
typeof(df1_R)                 # cek tipe datanya
## [1] "list"
class(df1_R)                  # cek tipe datanya
## [1] "data.frame"
df1_R[1,5]                    # ekstrak elemen di baris ke-1 dan kolom ke-5
## [1] "BA"
df1_R$nama                    # ekstrak spesifik kolom ('nama')
## [1] "Hendri" "Maman"  "Soni"   "Jamrud" "Tulus"
df1_R[,c('nama','divisi')]    # ekstrak spesifik kolom ('nama,divisi')
##     nama divisi
## 1 Hendri     BA
## 2  Maman     DS
## 3   Soni     DS
## 4 Jamrud     DA
## 5  Tulus     BA
df1_R[1:5,]                   # ekstrak lima kolom pertama Karyawan_R
##   kode   nama gaji mulai_kerja divisi stringAsFactors
## 1    1 Hendri  762  2035-03-09     BA           FALSE
## 2    2  Maman  323  2035-07-02     DS           FALSE
## 3    3   Soni  452  2035-02-03     DS           FALSE
## 4    4 Jamrud  652  2035-04-06     DA           FALSE
## 5    5  Tulus  231  2035-02-02     BA           FALSE

5 SOAL 5

Buatlah operasi Ganti Nama Variabel pada suatu Data Frame dengan menggunakan R dan Python.

5.1 Jawaban Soal 5

# ganti nama variabel
dfr2_R<-df1_R
names(dfr2_R)<-c("ID",
                 "Nama",
                 "Gaji",
                 "Mulai Kerja",
                 "Posisi")
print(dfr2_R)
##   ID   Nama Gaji Mulai Kerja Posisi    NA
## 1  1 Hendri  762  2035-03-09     BA FALSE
## 2  2  Maman  323  2035-07-02     DS FALSE
## 3  3   Soni  452  2035-02-03     DS FALSE
## 4  4 Jamrud  652  2035-04-06     DA FALSE
## 5  5  Tulus  231  2035-02-02     BA FALSE
LS0tDQp0aXRsZTogIkFsZ29yaXRtYSBkYW4gU3RhdGlzdGlrYSBCaXNuaXMiDQpzdWJ0aXRsZTogIlR1Z2FzIDEiDQphdXRob3I6ICJTYXVzYW4gUmFtYWRoYW5pICgyMDIxNDkyMDAwNCkiDQpkYXRlOiAiYHIgZm9ybWF0KFN5cy5EYXRlKCksICclQiAlZCwgJVknKWAiDQpvdXRwdXQ6IA0KICBodG1sX2RvY3VtZW50OiANCiAgICBodG1sX2RvY3VtZW50OiBudWxsDQogICAgY29kZV9mb2xkaW5nOiBoaWRlDQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZmxvYXQ6DQogICAgICBjb2xsYXBzZWQ6IHllcw0KICAgIG51bWJlcl9zZWN0aW9uczogeWVzDQogICAgY29kZV9kb3dubG9hZDogeWVzDQogICAgdGhlbWU6IHNhbmRzdG9uZQ0KICAgIGNzczogc3R5bGUxLmNzcw0KICAgIGhpZ2hsaWdodDogbW9ub2Nocm9tZQ0KLS0tDQoNCg0KPGltZyBzdHlsZT0iZmxvYXQ6IHJpZ2h0OyBtYXJnaW46IDBweCAxMDBweCAwcHggMHB4OyB3aWR0aDoyNSUiIHNyYz0iZm90b3Byb2ZpbC5wbmciLz4gDQoNCmBgYHtyIGxvZ28sIGVjaG89RkFMU0UsZmlnLmFsaWduPSdjZW50ZXInLCBvdXQud2lkdGggPSAnMzAlJ30NCmtuaXRyOjppbmNsdWRlX2dyYXBoaWNzKCJsb2dvbWF0YW5hLnBuZyIpDQpgYGANCg0KRW1haWwgJm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7Jm5ic3A7OiAgc2F1c2FuLnJhbWFkaGFuaUBzdHVkZW50Lm1hdGFuYXVuaXZlcnNpdHkuYWMuaWQgPGJyPg0KUlB1YnMgICZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOzogaHR0cHM6Ly9ycHVicy5jb20vc2F1c2FucmFtYWRoYW5pLyA8YnI+DQpKdXJ1c2FuICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDs6IFtTdGF0aXN0aWthXShodHRwczovL21hdGFuYXVuaXZlcnNpdHkuYWMuaWQvP2x5PWFjYWRlbWljJmM9c2IpIDxicj4NCkFkZHJlc3MgICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyA6IEFSQSBDZW50ZXIsIE1hdGFuYSBVbml2ZXJzaXR5IFRvd2VyIDxicj4NCiZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7Jm5ic3A7IEpsLiBDQkQgQmFyYXQgS2F2LCBSVC4xLCBDdXJ1ZyBTYW5nZXJlbmcsIEtlbGFwYSBEdWEsIFRhbmdlcmFuZywgQmFudGVuIDE1ODEwLg0KDQoqKioqDQoNCiMgU09BTCAxDQoNCk1lbWJ1YXQgUHJvZ3JhbSBkZW5nYW4gTGlzdCBSIGRhbiBQeXRob24NCg0KKiBCdWF0IHNlYnVhaCBsaXN0IHVudHVrIG1lbnlpbXBhbiA1IG9yYW5nIHRlbWFuIGRla2F0bXUNCiogUGlsaWhsYWggc2F0dSBvcmFuZyBkYXJpIGxpc3QgdGVyc2VidXQgeWFuZyBtZW5qYWRpIHRlbWFuIHBhbGluZyBkZWthdG11ICBkZW5nYW4gbWVuZ2d1bmFrYW4gaW5kZXgNCiogR2FudGlsYWggc2F0dSBvcmFuZyB5YW5nIHRpZGFrIGJlZ2l0dSBkZWthdCBkZW5nYW5tdSBkZW5nYW4gdGVtYW4gYmFydSB5YW5nIGthbXUgdGVtdWkgYmFydS1iYXJ1IGluaQ0KKiBCYWdhaW1hbmEgY2FyYW55YSBhbmRhIG1lbmdoaXR1bmcgYmFueWFrIHRlbWFuIHlhbmcgYWRhIGRhbGFtIGxpc3QgdGVyc2VidXQNCg0KIyMgSmF3YWJhbiBTb2FsIDENCg0KYGBge3J9DQpsaXN0MSA9IGxpc3QoIm5hZGluZSIsInJpdmEiLCJkYXZpZCIsImNhcm9saW5lIiwidmFuZXNzYSIpICAjIG1lbWJ1YXQgbGlzdA0KcHJpbnQobGlzdDFbMV0pICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBwaWxpaCBzYXR1DQpgYGANCg0KYGBge3J9DQpsaXN0MSA9IGxpc3QoIm5hZGluZSIsInJpdmEiLCJkYXZpZCIsImNhcm9saW5lIiwidmFuZXNzYSIpICAgICAjIHN1YXR1IGxpc3QNCmxpc3QxWzNdID0gInJhcmEiICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgbWVuZ2dhbnRpIHNhbGFoIHNhdHUgbmlsYWkNCnByaW50KGxpc3QxKQ0KYGBgDQoNCmBgYHtyfQ0KbGVuZ3RoKGxpc3QxKSAgICMgbWVuZ2hpdHVuZyBqdW1sYWggaXNpIGxpc3QNCmBgYA0KDQoNCiMgU09BTCAyDQoNCkJ1YXRsYWggY29udG9oIG1lbnlpbXBhbiBzZWt1bXB1bGFuIHR1cGxlIGRlbmdhbiBSIGRhbiBQeXRob24sIGRlbmdhbiBtZW5naWt1dGkgaW5zdHJ1a3NpIGJlcmlrdXQ6DQoNCiogQnVhdGxhaCBUdXBsZSBkZW5nYW4gNSBpdGVtIGRpZGFsYW1ueWENCiogUGVybGloYXRrYW4gY2FyYSBNZW5nYWtzZXMgTmlsYWkgVHVwbGUNCiogQmFnYWltYW5hIGFuZGEgbWVsYWt1a2FuIFNsaWNpbmcgTmlsYWkgVHVwbGUNCiogTmVzdGVkIFR1cGxlDQoqIFVucGFja2luZyBTZXF1ZW5jZQ0KDQojIyBKYXdhYmFuIFNvYWwgMg0KDQpgYGB7cn0NCmxpYnJhcnkoc2V0cykNCnR1cGxlMSA9IHR1cGxlKCJyb3RpIHRhd2FyIiwicm90aSBtYW5pcyIsInJvdGkgc29iZWsiLCJyb3RpIGJ1YXlhIiwicm90aSBnYW5kdW0iKSAgICAgICAjIG1lbWJ1YXQgdHVwbGUNCnByaW50KHR1cGxlMVszXSkgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIG1lbmdha3NlcyBuaWxhaSB0dXBsZQ0KYGBgDQoNCmBgYHtyfQ0KcHJpbnQodHVwbGUxWzE6NF0pICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgc2xpY2luZyBuaWxhaSB0dXBsZQ0KYGBgDQoNCmBgYHtyfQ0KbGlicmFyeShzZXRzKQ0KdHVwbGUyID0gdHVwbGUoInNlbGFpIGNva2xhdCBrYWNhbmciLCAic2VsYWkgc3Ryb2JlcmkiLCAic2VsYWkgbmFuYXMiKQ0KdHVwbGUzID0gYyh0dXBsZTEsIHR1cGxlMikgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgbmVzdGVkIHR1cGxlDQpwcmludCh0dXBsZTMpDQpgYGANCg0KDQojIFNPQUwgMw0KDQpCdWF0bGFoIGNvbnRvaCBtZW55aW1wYW4gc2VrdW1wdWxhbiBEaWN0aW9uYXJ5IGRlbmdhbiBSIGRhbiBQeXRob24sIHlhbmcgbWVtdWF0IHR5cGUgZGF0YSBmbG9hdCwgaW50ZWdlciwgY2hhcmFjdGVyLCBkYW4gbG9naWNhbCwgbGlzdCwgdHVwbGUsIGRpY3Rpb25hcnkgZGVuZ2FuIG1lbmdpa3V0aSBpbnN0cnVrc2kgYmVyaWt1dDoNCg0KKiBBa3NlcyBzdWF0dSBuaWxhaSBJdGVtIGRhcmkgRGljdGlvbmFyeSANCiogVWJhaCBzdWF0dSBOaWxhaSBJdGVtIHBhZGEgRGljdGlvbmFyeQ0KKiBNZW5hbWJhaGthbiBJdGVtIGtlIERpY3Rpb25hcnkNCiogTWVuZ2hhcHVzIEl0ZW0gZGFyaSBEaWN0aW9uYXJ5DQoNCiMjIEphd2FiYW4gU29hbCAzDQoNCmBgYHtyfQ0KbGlicmFyeShEaWN0KSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIG1lbnlpbXBhbiBzZWt1bXB1bGFuIGRpY3Rpb25hcnkNCmRlbnR1bXNlcmFidXQgPSBkaWN0KA0KICBuYW1hID0gIlNhdXNhbiBSYW1hZGhhbmkiLA0KICB1bXVyID0gYXMuaW50ZWdlcigxOSksDQogIGhvYmkgPSBsaXN0KCJmdXRzYWwiLCAibWVub250b24gZmlsbSIsICJtZW1hc2FrIiksDQogIG1lbmlrYWggPSBGQUxTRSwNCiAgc29zbWVkID0gdHVwbGUoaW5zdGFncmFtPSAic2FyYW0uMDUiLA0KICAgICAgICAgICAgICAgICB0aWt0b2s9ICJzYXVzYW5yYW1hZGhhbmkiKQ0KKQ0KYGBgDQoNCmBgYHtyfQ0KY2F0KCJOYW1hIHNheWEgYWRhbGFoIDoiLCBkZW50dW1zZXJhYnV0JGdldCgnbmFtYScpKSAgICAgICAgICAjIGFrc2VzIHN1YXR1IG5pbGFpIGl0ZW0NCmBgYA0KDQpgYGB7cn0NCnByaW50KGRlbnR1bXNlcmFidXQkZ2V0KCdzb3NtZWQnKVsnaW5zdGFncmFtJ10pICAgICAgICAgICAgICAgIyBha3NlcyBzdWF0dSBuaWxhaSBpdGVtDQpgYGANCg0KYGBge3J9DQpkZW50dW1zZXJhYnV0WyduYW1hJ10gPSAiTXVnZW1pIFNhdXNhbiBSYW1hZGhhbmkiICAgICAgICAgICAgICMgbWVuZ3ViYWggc3VhdHUgbmlsYWkNCnByaW50KGRlbnR1bXNlcmFidXQkZ2V0KCduYW1hJykpDQpgYGANCg0KYGBge3J9DQpkZW50dW1zZXJhYnV0IFsndGluZ2dpIGJhZGFuJ10gPSAiMTU5IiAgICAgICAgICAgICAgICAgICAgICAgICMgbWVuYW1iYWhrYW4gc3VhdHUgbmlsYWkNCnByaW50KGRlbnR1bXNlcmFidXQkZ2V0KCd0aW5nZ2kgYmFkYW4nKSkNCmBgYA0KDQpgYGB7cn0NCmRlbnR1bXNlcmFidXQkcmVtb3ZlKCJob2JpIikgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBtZW5naGFwdXMgc3VhdHUgbmlsYWkNCnByaW50KGRlbnR1bXNlcmFidXQkZ2V0KCdob2JpJykpDQpgYGANCg0KDQojIFNPQUwgNA0KDQpTaWxhaGthbiB1bnR1ayBtZW5lbXVrYW4gb3BlcmFzaSBQZW5naW5kZWtzYW4sIFBlbmdpcmlzYW4sIGRhbiBTdWJzZXR0aW5nIERhdGEgRnJhbWUgZGVuZ2FuIE1lbmdndW5rYW4gUiBkYW4gUHl0aG9uLg0KDQojIyBKYXdhYmFuIFNvYWwgNA0KDQpgYGB7cn0NCiMgbWVtYnVhdCBzdWF0dSBkYXRhIGZyYW1lDQpkZjFfUiA8LSBkYXRhLmZyYW1lKGtvZGUgPSBjICgxOjUpLA0KICAgICAgICAgICAgICAgICAgICBuYW1hID0gYygiSGVuZHJpIiwiTWFtYW4iLCJTb25pIiwiSmFtcnVkIiwiVHVsdXMiKSwNCiAgICAgICAgICAgICAgICAgICAgZ2FqaSA9IGMoNzYyLCAzMjMsIDQ1MiwgNjUyLCAyMzEpLA0KICAgICAgICAgICAgIG11bGFpX2tlcmphID0gYXMuRGF0ZShjKCIyMDM1LTAzLTA5IiwiMjAzNS0wNy0wMiIsIjIwMzUtMDItMDMiLCIyMDM1LTA0LTA2IiwiMjAzNS0wMi0wMiIpKSwNCiAgICAgICAgICAgICAgICAgIGRpdmlzaSA9IGMgKCJCQSIsIkRTIiwiRFMiLCJEQSIsIkJBIiksIHN0cmluZ0FzRmFjdG9ycyA9IEYpDQpwcmludChkZjFfUikNCmBgYA0KDQpgYGB7cn0NCiMgb3BlcmFzaSBwZW5naW5kZWtzYW4sIFBlbmdpcmlzYW4sIGRhbiBTdWJzZXR0aW5nIERhdGEgRnJhbWUNCnR5cGVvZihkZjFfUikgICAgICAgICAgICAgICAgICMgY2VrIHRpcGUgZGF0YW55YQ0KY2xhc3MoZGYxX1IpICAgICAgICAgICAgICAgICAgIyBjZWsgdGlwZSBkYXRhbnlhDQpkZjFfUlsxLDVdICAgICAgICAgICAgICAgICAgICAjIGVrc3RyYWsgZWxlbWVuIGRpIGJhcmlzIGtlLTEgZGFuIGtvbG9tIGtlLTUNCmRmMV9SJG5hbWEgICAgICAgICAgICAgICAgICAgICMgZWtzdHJhayBzcGVzaWZpayBrb2xvbSAoJ25hbWEnKQ0KZGYxX1JbLGMoJ25hbWEnLCdkaXZpc2knKV0gICAgIyBla3N0cmFrIHNwZXNpZmlrIGtvbG9tICgnbmFtYSxkaXZpc2knKQ0KZGYxX1JbMTo1LF0gICAgICAgICAgICAgICAgICAgIyBla3N0cmFrIGxpbWEga29sb20gcGVydGFtYSBLYXJ5YXdhbl9SDQpgYGANCg0KDQoNCiMgU09BTCA1DQoNCkJ1YXRsYWggb3BlcmFzaSBHYW50aSBOYW1hIFZhcmlhYmVsIHBhZGEgc3VhdHUgRGF0YSBGcmFtZSBkZW5nYW4gbWVuZ2d1bmFrYW4gUiBkYW4gUHl0aG9uLg0KDQojIyBKYXdhYmFuIFNvYWwgNQ0KDQpgYGB7cn0NCiMgZ2FudGkgbmFtYSB2YXJpYWJlbA0KZGZyMl9SPC1kZjFfUg0KbmFtZXMoZGZyMl9SKTwtYygiSUQiLA0KICAgICAgICAgICAgICAgICAiTmFtYSIsDQogICAgICAgICAgICAgICAgICJHYWppIiwNCiAgICAgICAgICAgICAgICAgIk11bGFpIEtlcmphIiwNCiAgICAgICAgICAgICAgICAgIlBvc2lzaSIpDQpwcmludChkZnIyX1IpDQpgYGANCg0K