Email             :
RPubs            : https://rpubs.com/albert23899
Jurusan          : Statistika
Address         : ARA Center, Matana University Tower
                         Jl. CBD Barat Kav, RT.1, Curug Sangereng, Kelapa Dua, Tangerang, Banten 15810.


1 Membuat program dengan list R

Berikut merupakan pemrograman untuk membuat list, memilih data dari list dengan indek, dan mengganti komponen dari list

list1= list("Eko","Vincent","Ryan","Kaka","Sarah") #list 5 teman dekat
print(list1) #Mencetak list 5 orang dekat
## [[1]]
## [1] "Eko"
## 
## [[2]]
## [1] "Vincent"
## 
## [[3]]
## [1] "Ryan"
## 
## [[4]]
## [1] "Kaka"
## 
## [[5]]
## [1] "Sarah"
print(list1[3]) #Mencetak nama teman terdekat dengan index
## [[1]]
## [1] "Ryan"
list1[1]="Vivian" #Mengganti nama Eko dengan Vivian
print(list1) #Mencetak list 1 setelah diganti nama
## [[1]]
## [1] "Vivian"
## 
## [[2]]
## [1] "Vincent"
## 
## [[3]]
## [1] "Ryan"
## 
## [[4]]
## [1] "Kaka"
## 
## [[5]]
## [1] "Sarah"
length(list1) #Mencetak jumlah anggota dalam list 1
## [1] 5

2 Membuat tuple dengan R

Berikut Pemrograman R membuat tuple sejumlah 5 item, kemudian bagaimana mengakses nilai tuple, memotong nilai tuple, Nested Tuple, dan unpacking sequence dengan pemrograman r

library(sets)
tuple0 =tuple("Pagi")
tuple1 = tuple("Halo","Selamat","Siang","Apa","Kabar") #Membuat 5 item tuple
print(tuple1) #Mencetak nilai tuple1
## ("Halo", "Selamat", "Siang", "Apa", "Kabar")
print(tuple1[2]) #Mengakses nilai item 2 tuple1
## ("Selamat")
print(tuple1[2:4]) #Memotong nilai tuple1 item ke-2 hingga item ke-4
## ("Selamat", "Siang", "Apa")
tuple2 =c(tuple0,tuple1) #Nested Tuple
print(tuple2)
## ("Pagi", "Halo", "Selamat", "Siang", "Apa", "Kabar")
tuple3 =rep(tuple1,2) #Unpacking Sequence
print(tuple3)
## ("Halo", "Selamat", "Siang", "Apa", "Kabar", "Halo", "Selamat",
##  "Siang", "Apa", "Kabar")

3 Membuat Dictionary

Pemrograman dibawah merupakan cara membuat library di R, selain itu juga ada cara untuk mengakses isi dictionary, mengubah nilai item dictionary, dan menghapus item dictionary.

library(Dict)
## 
## Attaching package: 'Dict'
## The following object is masked from 'package:sets':
## 
##     %>%
#Membuat Dictionary
library1 = dict(
nama="Albert Agung",
umur=as.integer(22),
hobi=list("Main Mobile Legends","Musik","Catur"),
menikah=FALSE,
sosmed=dict(instagram="tutupbotolkecap",
            facebook="tutupbotolkecap"
            )
)
print(library1)
## # A tibble: 5 x 2
##   key     value     
##   <chr>   <list>    
## 1 nama    <chr [1]> 
## 2 umur    <int [1]> 
## 3 hobi    <list [3]>
## 4 menikah <lgl [1]> 
## 5 sosmed  <Dict>
#Mengakses isi Dictionary
cat("Nama saya adalah : ",library1$get('nama'))
## Nama saya adalah :  Albert Agung
print(library1$get('sosmed')['instagram'])
## [1] "tutupbotolkecap"
#Mengubah nilai item dictionary
library1["nama"] = "Albert Prayogo"
#Menghapus item dictionary
print(library1$remove("umur"))
## # A tibble: 4 x 2
##   key     value     
##   <chr>   <list>    
## 1 hobi    <list [3]>
## 2 menikah <lgl [1]> 
## 3 nama    <chr [1]> 
## 4 sosmed  <Dict>

4 Membangun Data Frame

df1_R<-data.frame(kode=c(1:5),
                  nama=c("Julian","Vanessa","Jeffry","Angel","Nikki"),
                  gaji=c(623.3,515.2,611.0,729.0,843.25),
                  mulai_kerja=as.Date(c("2022-01-01","2022-09-23","2022-11-15","2022-05-11","2022-03-27")),
                  divisi=c("DS","DS","BA","DA","DS"),stringAsFactors=F)
df2_R<-data.frame(kode=c(6:10),
                  nama=c("Ardifo","Irene","Kefas","Sherly","Bakti"),
                  gaji=c(578.0,722.5,632.8,632.8,NA),
                  mulai_kerja=as.Date(c("2022-05-21","2022-07-30","2022-06-17","2022-07-30","2018-09-03")),
                  divisi=c("Actuaries","Actuaries","CA","DE","Lecturer"),stringAsFactors=F)
df3_R<-rbind(df1_R,df2_R) #Menggabungkan data frame
print(df3_R) #Mencetak dataframe gabungan
##    kode    nama   gaji mulai_kerja    divisi stringAsFactors
## 1     1  Julian 623.30  2022-01-01        DS           FALSE
## 2     2 Vanessa 515.20  2022-09-23        DS           FALSE
## 3     3  Jeffry 611.00  2022-11-15        BA           FALSE
## 4     4   Angel 729.00  2022-05-11        DA           FALSE
## 5     5   Nikki 843.25  2022-03-27        DS           FALSE
## 6     6  Ardifo 578.00  2022-05-21 Actuaries           FALSE
## 7     7   Irene 722.50  2022-07-30 Actuaries           FALSE
## 8     8   Kefas 632.80  2022-06-17        CA           FALSE
## 9     9  Sherly 632.80  2022-07-30        DE           FALSE
## 10   10   Bakti     NA  2018-09-03  Lecturer           FALSE
head(df3_R,6) #Mencetak 6 baris pertama data frame
##   kode    nama   gaji mulai_kerja    divisi stringAsFactors
## 1    1  Julian 623.30  2022-01-01        DS           FALSE
## 2    2 Vanessa 515.20  2022-09-23        DS           FALSE
## 3    3  Jeffry 611.00  2022-11-15        BA           FALSE
## 4    4   Angel 729.00  2022-05-11        DA           FALSE
## 5    5   Nikki 843.25  2022-03-27        DS           FALSE
## 6    6  Ardifo 578.00  2022-05-21 Actuaries           FALSE
tail(df3_R,6) #Mencetak6 baris terakhir data frame
##    kode   nama   gaji mulai_kerja    divisi stringAsFactors
## 5     5  Nikki 843.25  2022-03-27        DS           FALSE
## 6     6 Ardifo 578.00  2022-05-21 Actuaries           FALSE
## 7     7  Irene 722.50  2022-07-30 Actuaries           FALSE
## 8     8  Kefas 632.80  2022-06-17        CA           FALSE
## 9     9 Sherly 632.80  2022-07-30        DE           FALSE
## 10   10  Bakti     NA  2018-09-03  Lecturer           FALSE
class(df3_R) #Mencetak tipe data.fame
## [1] "data.frame"
str(df3_R) #Mencetak tipe struktur data
## 'data.frame':    10 obs. of  6 variables:
##  $ kode           : int  1 2 3 4 5 6 7 8 9 10
##  $ nama           : chr  "Julian" "Vanessa" "Jeffry" "Angel" ...
##  $ gaji           : num  623 515 611 729 843 ...
##  $ mulai_kerja    : Date, format: "2022-01-01" "2022-09-23" ...
##  $ divisi         : chr  "DS" "DS" "BA" "DA" ...
##  $ stringAsFactors: logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
dim(df3_R) #Mencetak dimensi data frame
## [1] 10  6
summary(df3_R) #ringkasan data frame
##       kode           nama                gaji        mulai_kerja        
##  Min.   : 1.00   Length:10          Min.   :515.2   Min.   :2018-09-03  
##  1st Qu.: 3.25   Class :character   1st Qu.:611.0   1st Qu.:2022-04-07  
##  Median : 5.50   Mode  :character   Median :632.8   Median :2022-06-03  
##  Mean   : 5.50                      Mean   :654.2   Mean   :2022-01-31  
##  3rd Qu.: 7.75                      3rd Qu.:722.5   3rd Qu.:2022-07-30  
##  Max.   :10.00                      Max.   :843.2   Max.   :2022-11-15  
##                                     NA's   :1                           
##     divisi          stringAsFactors
##  Length:10          Mode :logical  
##  Class :character   FALSE:10       
##  Mode  :character                  
##                                    
##                                    
##                                    
## 

5 Rekayasa Data Frame

No<-(1:52) #Menghasilkan Nomor 1 hingga 52
Nama<-c(LETTERS,letters) #Menghasilkan huruf kapital dan non-kapital
Jenis_Kelamin <-sample(rep(c("Pria","Wanita"),times=26)) #Jenis Kelamin
#Menghasilkan tanggal lahir dengan time series
Tiga_Tahun<-seq(as.Date("2000/01/01"), by="year", length.out=4)
Tanggal_Lahir<-rep(Tiga_Tahun,times=13)
#Kategori Universitas
univ1<-rep("Negeri",times=26) #Mencetak asal universitas negeri sebanyak 26
univ2<-rep("Swasta",times=16) #Mencetak asal universitas swasta sebanyak 16
univ3<-rep("LN",times=10) #Mencetak asal universtias luar negeri sebanyak 10
Universitas<-sample(c(univ1,univ2,univ3)) #Menggabungkan list diatas
gpa<-runif(52,min = 3.00,max = 4.00) #Menghasilkan 52 angka acak
GPA<-round(gpa,digits = 2) #Mengatur digit angka
Gaji<-sample(600:1200,52,replace=T) #Menghasilkan sampel antara 600-1200
Karyawan_R<-data.frame(No,
                       Nama,
                       Jenis_Kelamin,
                       Tanggal_Lahir,
                       Universitas,
                       GPA,Gaji)
print(Karyawan_R)
##    No Nama Jenis_Kelamin Tanggal_Lahir Universitas  GPA Gaji
## 1   1    A          Pria    2000-01-01          LN 3.02  911
## 2   2    B        Wanita    2001-01-01      Swasta 3.48  789
## 3   3    C        Wanita    2002-01-01      Negeri 3.86 1008
## 4   4    D        Wanita    2003-01-01      Negeri 3.96 1026
## 5   5    E        Wanita    2000-01-01      Negeri 3.74  860
## 6   6    F          Pria    2001-01-01      Swasta 3.45 1103
## 7   7    G          Pria    2002-01-01          LN 3.33 1009
## 8   8    H        Wanita    2003-01-01      Swasta 3.33 1162
## 9   9    I        Wanita    2000-01-01      Negeri 3.53 1007
## 10 10    J        Wanita    2001-01-01      Swasta 3.23 1003
## 11 11    K          Pria    2002-01-01      Negeri 3.85 1031
## 12 12    L        Wanita    2003-01-01      Negeri 3.53  862
## 13 13    M        Wanita    2000-01-01          LN 3.60  919
## 14 14    N          Pria    2001-01-01      Negeri 3.08  833
## 15 15    O        Wanita    2002-01-01      Swasta 3.23  855
## 16 16    P          Pria    2003-01-01      Negeri 3.08  655
## 17 17    Q          Pria    2000-01-01      Negeri 3.12 1192
## 18 18    R          Pria    2001-01-01      Swasta 3.06 1004
## 19 19    S        Wanita    2002-01-01          LN 3.19  983
## 20 20    T          Pria    2003-01-01          LN 3.29  678
## 21 21    U          Pria    2000-01-01      Negeri 3.12 1083
## 22 22    V        Wanita    2001-01-01      Swasta 3.70 1098
## 23 23    W          Pria    2002-01-01      Negeri 3.15 1070
## 24 24    X          Pria    2003-01-01      Negeri 3.07  871
## 25 25    Y          Pria    2000-01-01      Negeri 3.53  621
## 26 26    Z          Pria    2001-01-01      Negeri 3.50 1044
## 27 27    a          Pria    2002-01-01      Swasta 3.90  733
## 28 28    b          Pria    2003-01-01      Negeri 3.01 1028
## 29 29    c        Wanita    2000-01-01          LN 3.10  716
## 30 30    d        Wanita    2001-01-01      Negeri 3.19  927
## 31 31    e        Wanita    2002-01-01      Negeri 3.33 1087
## 32 32    f        Wanita    2003-01-01      Negeri 3.98  756
## 33 33    g          Pria    2000-01-01      Negeri 3.49 1108
## 34 34    h        Wanita    2001-01-01      Negeri 3.46 1024
## 35 35    i          Pria    2002-01-01          LN 3.83  771
## 36 36    j        Wanita    2003-01-01      Swasta 3.46  629
## 37 37    k        Wanita    2000-01-01      Negeri 3.16  844
## 38 38    l          Pria    2001-01-01      Swasta 3.06  925
## 39 39    m          Pria    2002-01-01      Negeri 3.27 1029
## 40 40    n          Pria    2003-01-01      Negeri 3.59  985
## 41 41    o        Wanita    2000-01-01          LN 3.66  782
## 42 42    p        Wanita    2001-01-01      Swasta 3.25 1123
## 43 43    q          Pria    2002-01-01      Swasta 3.97 1196
## 44 44    r        Wanita    2003-01-01          LN 3.08  877
## 45 45    s          Pria    2000-01-01      Swasta 3.28  769
## 46 46    t        Wanita    2001-01-01      Swasta 3.28  944
## 47 47    u        Wanita    2002-01-01          LN 3.10  880
## 48 48    v          Pria    2003-01-01      Negeri 3.22  909
## 49 49    w        Wanita    2000-01-01      Negeri 3.65  801
## 50 50    x        Wanita    2001-01-01      Swasta 3.28  784
## 51 51    y          Pria    2002-01-01      Swasta 3.17  713
## 52 52    z          Pria    2003-01-01      Negeri 3.57  686

6 Ekstrasi Data Frame

typeof(Karyawan_R) #Mencetak tipe data
## [1] "list"
class(Karyawan_R) #Mencetak tipe data
## [1] "data.frame"
Karyawan_R[1,5] #Mengekstrak data baris 1 dan kolom 5
## [1] "LN"
Karyawan_R$Nama #Mengekstrak kolom nama
##  [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S"
## [20] "T" "U" "V" "W" "X" "Y" "Z" "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l"
## [39] "m" "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"
Karyawan_R[,c('Nama','Jenis_Kelamin')] # Ekstrak spesifik kolom nama dan jenis kelamin
##    Nama Jenis_Kelamin
## 1     A          Pria
## 2     B        Wanita
## 3     C        Wanita
## 4     D        Wanita
## 5     E        Wanita
## 6     F          Pria
## 7     G          Pria
## 8     H        Wanita
## 9     I        Wanita
## 10    J        Wanita
## 11    K          Pria
## 12    L        Wanita
## 13    M        Wanita
## 14    N          Pria
## 15    O        Wanita
## 16    P          Pria
## 17    Q          Pria
## 18    R          Pria
## 19    S        Wanita
## 20    T          Pria
## 21    U          Pria
## 22    V        Wanita
## 23    W          Pria
## 24    X          Pria
## 25    Y          Pria
## 26    Z          Pria
## 27    a          Pria
## 28    b          Pria
## 29    c        Wanita
## 30    d        Wanita
## 31    e        Wanita
## 32    f        Wanita
## 33    g          Pria
## 34    h        Wanita
## 35    i          Pria
## 36    j        Wanita
## 37    k        Wanita
## 38    l          Pria
## 39    m          Pria
## 40    n          Pria
## 41    o        Wanita
## 42    p        Wanita
## 43    q          Pria
## 44    r        Wanita
## 45    s          Pria
## 46    t        Wanita
## 47    u        Wanita
## 48    v          Pria
## 49    w        Wanita
## 50    x        Wanita
## 51    y          Pria
## 52    z          Pria
Karyawan_R[1:5,] #Mencetak lima baris pertama
##   No Nama Jenis_Kelamin Tanggal_Lahir Universitas  GPA Gaji
## 1  1    A          Pria    2000-01-01          LN 3.02  911
## 2  2    B        Wanita    2001-01-01      Swasta 3.48  789
## 3  3    C        Wanita    2002-01-01      Negeri 3.86 1008
## 4  4    D        Wanita    2003-01-01      Negeri 3.96 1026
## 5  5    E        Wanita    2000-01-01      Negeri 3.74  860
Karyawan_R[,1:5] #Mencetak lima kolom pertama
##    No Nama Jenis_Kelamin Tanggal_Lahir Universitas
## 1   1    A          Pria    2000-01-01          LN
## 2   2    B        Wanita    2001-01-01      Swasta
## 3   3    C        Wanita    2002-01-01      Negeri
## 4   4    D        Wanita    2003-01-01      Negeri
## 5   5    E        Wanita    2000-01-01      Negeri
## 6   6    F          Pria    2001-01-01      Swasta
## 7   7    G          Pria    2002-01-01          LN
## 8   8    H        Wanita    2003-01-01      Swasta
## 9   9    I        Wanita    2000-01-01      Negeri
## 10 10    J        Wanita    2001-01-01      Swasta
## 11 11    K          Pria    2002-01-01      Negeri
## 12 12    L        Wanita    2003-01-01      Negeri
## 13 13    M        Wanita    2000-01-01          LN
## 14 14    N          Pria    2001-01-01      Negeri
## 15 15    O        Wanita    2002-01-01      Swasta
## 16 16    P          Pria    2003-01-01      Negeri
## 17 17    Q          Pria    2000-01-01      Negeri
## 18 18    R          Pria    2001-01-01      Swasta
## 19 19    S        Wanita    2002-01-01          LN
## 20 20    T          Pria    2003-01-01          LN
## 21 21    U          Pria    2000-01-01      Negeri
## 22 22    V        Wanita    2001-01-01      Swasta
## 23 23    W          Pria    2002-01-01      Negeri
## 24 24    X          Pria    2003-01-01      Negeri
## 25 25    Y          Pria    2000-01-01      Negeri
## 26 26    Z          Pria    2001-01-01      Negeri
## 27 27    a          Pria    2002-01-01      Swasta
## 28 28    b          Pria    2003-01-01      Negeri
## 29 29    c        Wanita    2000-01-01          LN
## 30 30    d        Wanita    2001-01-01      Negeri
## 31 31    e        Wanita    2002-01-01      Negeri
## 32 32    f        Wanita    2003-01-01      Negeri
## 33 33    g          Pria    2000-01-01      Negeri
## 34 34    h        Wanita    2001-01-01      Negeri
## 35 35    i          Pria    2002-01-01          LN
## 36 36    j        Wanita    2003-01-01      Swasta
## 37 37    k        Wanita    2000-01-01      Negeri
## 38 38    l          Pria    2001-01-01      Swasta
## 39 39    m          Pria    2002-01-01      Negeri
## 40 40    n          Pria    2003-01-01      Negeri
## 41 41    o        Wanita    2000-01-01          LN
## 42 42    p        Wanita    2001-01-01      Swasta
## 43 43    q          Pria    2002-01-01      Swasta
## 44 44    r        Wanita    2003-01-01          LN
## 45 45    s          Pria    2000-01-01      Swasta
## 46 46    t        Wanita    2001-01-01      Swasta
## 47 47    u        Wanita    2002-01-01          LN
## 48 48    v          Pria    2003-01-01      Negeri
## 49 49    w        Wanita    2000-01-01      Negeri
## 50 50    x        Wanita    2001-01-01      Swasta
## 51 51    y          Pria    2002-01-01      Swasta
## 52 52    z          Pria    2003-01-01      Negeri
subset(Karyawan_R,select = GPA) #Subset Kolom GPA
##     GPA
## 1  3.02
## 2  3.48
## 3  3.86
## 4  3.96
## 5  3.74
## 6  3.45
## 7  3.33
## 8  3.33
## 9  3.53
## 10 3.23
## 11 3.85
## 12 3.53
## 13 3.60
## 14 3.08
## 15 3.23
## 16 3.08
## 17 3.12
## 18 3.06
## 19 3.19
## 20 3.29
## 21 3.12
## 22 3.70
## 23 3.15
## 24 3.07
## 25 3.53
## 26 3.50
## 27 3.90
## 28 3.01
## 29 3.10
## 30 3.19
## 31 3.33
## 32 3.98
## 33 3.49
## 34 3.46
## 35 3.83
## 36 3.46
## 37 3.16
## 38 3.06
## 39 3.27
## 40 3.59
## 41 3.66
## 42 3.25
## 43 3.97
## 44 3.08
## 45 3.28
## 46 3.28
## 47 3.10
## 48 3.22
## 49 3.65
## 50 3.28
## 51 3.17
## 52 3.57
subset(Karyawan_R,select = 6) #Subset Kolom ke 6
##     GPA
## 1  3.02
## 2  3.48
## 3  3.86
## 4  3.96
## 5  3.74
## 6  3.45
## 7  3.33
## 8  3.33
## 9  3.53
## 10 3.23
## 11 3.85
## 12 3.53
## 13 3.60
## 14 3.08
## 15 3.23
## 16 3.08
## 17 3.12
## 18 3.06
## 19 3.19
## 20 3.29
## 21 3.12
## 22 3.70
## 23 3.15
## 24 3.07
## 25 3.53
## 26 3.50
## 27 3.90
## 28 3.01
## 29 3.10
## 30 3.19
## 31 3.33
## 32 3.98
## 33 3.49
## 34 3.46
## 35 3.83
## 36 3.46
## 37 3.16
## 38 3.06
## 39 3.27
## 40 3.59
## 41 3.66
## 42 3.25
## 43 3.97
## 44 3.08
## 45 3.28
## 46 3.28
## 47 3.10
## 48 3.22
## 49 3.65
## 50 3.28
## 51 3.17
## 52 3.57
subset(Karyawan_R,select = c(1,2)) #Subset kolom pertama dan kedua
##    No Nama
## 1   1    A
## 2   2    B
## 3   3    C
## 4   4    D
## 5   5    E
## 6   6    F
## 7   7    G
## 8   8    H
## 9   9    I
## 10 10    J
## 11 11    K
## 12 12    L
## 13 13    M
## 14 14    N
## 15 15    O
## 16 16    P
## 17 17    Q
## 18 18    R
## 19 19    S
## 20 20    T
## 21 21    U
## 22 22    V
## 23 23    W
## 24 24    X
## 25 25    Y
## 26 26    Z
## 27 27    a
## 28 28    b
## 29 29    c
## 30 30    d
## 31 31    e
## 32 32    f
## 33 33    g
## 34 34    h
## 35 35    i
## 36 36    j
## 37 37    k
## 38 38    l
## 39 39    m
## 40 40    n
## 41 41    o
## 42 42    p
## 43 43    q
## 44 44    r
## 45 45    s
## 46 46    t
## 47 47    u
## 48 48    v
## 49 49    w
## 50 50    x
## 51 51    y
## 52 52    z
subset(Karyawan_R,select = c(2:5)) #Subset kolom kedua hingga kelima
##    Nama Jenis_Kelamin Tanggal_Lahir Universitas
## 1     A          Pria    2000-01-01          LN
## 2     B        Wanita    2001-01-01      Swasta
## 3     C        Wanita    2002-01-01      Negeri
## 4     D        Wanita    2003-01-01      Negeri
## 5     E        Wanita    2000-01-01      Negeri
## 6     F          Pria    2001-01-01      Swasta
## 7     G          Pria    2002-01-01          LN
## 8     H        Wanita    2003-01-01      Swasta
## 9     I        Wanita    2000-01-01      Negeri
## 10    J        Wanita    2001-01-01      Swasta
## 11    K          Pria    2002-01-01      Negeri
## 12    L        Wanita    2003-01-01      Negeri
## 13    M        Wanita    2000-01-01          LN
## 14    N          Pria    2001-01-01      Negeri
## 15    O        Wanita    2002-01-01      Swasta
## 16    P          Pria    2003-01-01      Negeri
## 17    Q          Pria    2000-01-01      Negeri
## 18    R          Pria    2001-01-01      Swasta
## 19    S        Wanita    2002-01-01          LN
## 20    T          Pria    2003-01-01          LN
## 21    U          Pria    2000-01-01      Negeri
## 22    V        Wanita    2001-01-01      Swasta
## 23    W          Pria    2002-01-01      Negeri
## 24    X          Pria    2003-01-01      Negeri
## 25    Y          Pria    2000-01-01      Negeri
## 26    Z          Pria    2001-01-01      Negeri
## 27    a          Pria    2002-01-01      Swasta
## 28    b          Pria    2003-01-01      Negeri
## 29    c        Wanita    2000-01-01          LN
## 30    d        Wanita    2001-01-01      Negeri
## 31    e        Wanita    2002-01-01      Negeri
## 32    f        Wanita    2003-01-01      Negeri
## 33    g          Pria    2000-01-01      Negeri
## 34    h        Wanita    2001-01-01      Negeri
## 35    i          Pria    2002-01-01          LN
## 36    j        Wanita    2003-01-01      Swasta
## 37    k        Wanita    2000-01-01      Negeri
## 38    l          Pria    2001-01-01      Swasta
## 39    m          Pria    2002-01-01      Negeri
## 40    n          Pria    2003-01-01      Negeri
## 41    o        Wanita    2000-01-01          LN
## 42    p        Wanita    2001-01-01      Swasta
## 43    q          Pria    2002-01-01      Swasta
## 44    r        Wanita    2003-01-01          LN
## 45    s          Pria    2000-01-01      Swasta
## 46    t        Wanita    2001-01-01      Swasta
## 47    u        Wanita    2002-01-01          LN
## 48    v          Pria    2003-01-01      Negeri
## 49    w        Wanita    2000-01-01      Negeri
## 50    x        Wanita    2001-01-01      Swasta
## 51    y          Pria    2002-01-01      Swasta
## 52    z          Pria    2003-01-01      Negeri

7 Mengganti Nama Variabel

rename_1<-Karyawan_R
names(rename_1)<-c("no",
                   "nama",
                   "tgl.lahir",
                   "jenis.kelamin",
                   "univ",
                   "ipk",
                   "gaji")
rename_1
##    no nama tgl.lahir jenis.kelamin   univ  ipk gaji
## 1   1    A      Pria    2000-01-01     LN 3.02  911
## 2   2    B    Wanita    2001-01-01 Swasta 3.48  789
## 3   3    C    Wanita    2002-01-01 Negeri 3.86 1008
## 4   4    D    Wanita    2003-01-01 Negeri 3.96 1026
## 5   5    E    Wanita    2000-01-01 Negeri 3.74  860
## 6   6    F      Pria    2001-01-01 Swasta 3.45 1103
## 7   7    G      Pria    2002-01-01     LN 3.33 1009
## 8   8    H    Wanita    2003-01-01 Swasta 3.33 1162
## 9   9    I    Wanita    2000-01-01 Negeri 3.53 1007
## 10 10    J    Wanita    2001-01-01 Swasta 3.23 1003
## 11 11    K      Pria    2002-01-01 Negeri 3.85 1031
## 12 12    L    Wanita    2003-01-01 Negeri 3.53  862
## 13 13    M    Wanita    2000-01-01     LN 3.60  919
## 14 14    N      Pria    2001-01-01 Negeri 3.08  833
## 15 15    O    Wanita    2002-01-01 Swasta 3.23  855
## 16 16    P      Pria    2003-01-01 Negeri 3.08  655
## 17 17    Q      Pria    2000-01-01 Negeri 3.12 1192
## 18 18    R      Pria    2001-01-01 Swasta 3.06 1004
## 19 19    S    Wanita    2002-01-01     LN 3.19  983
## 20 20    T      Pria    2003-01-01     LN 3.29  678
## 21 21    U      Pria    2000-01-01 Negeri 3.12 1083
## 22 22    V    Wanita    2001-01-01 Swasta 3.70 1098
## 23 23    W      Pria    2002-01-01 Negeri 3.15 1070
## 24 24    X      Pria    2003-01-01 Negeri 3.07  871
## 25 25    Y      Pria    2000-01-01 Negeri 3.53  621
## 26 26    Z      Pria    2001-01-01 Negeri 3.50 1044
## 27 27    a      Pria    2002-01-01 Swasta 3.90  733
## 28 28    b      Pria    2003-01-01 Negeri 3.01 1028
## 29 29    c    Wanita    2000-01-01     LN 3.10  716
## 30 30    d    Wanita    2001-01-01 Negeri 3.19  927
## 31 31    e    Wanita    2002-01-01 Negeri 3.33 1087
## 32 32    f    Wanita    2003-01-01 Negeri 3.98  756
## 33 33    g      Pria    2000-01-01 Negeri 3.49 1108
## 34 34    h    Wanita    2001-01-01 Negeri 3.46 1024
## 35 35    i      Pria    2002-01-01     LN 3.83  771
## 36 36    j    Wanita    2003-01-01 Swasta 3.46  629
## 37 37    k    Wanita    2000-01-01 Negeri 3.16  844
## 38 38    l      Pria    2001-01-01 Swasta 3.06  925
## 39 39    m      Pria    2002-01-01 Negeri 3.27 1029
## 40 40    n      Pria    2003-01-01 Negeri 3.59  985
## 41 41    o    Wanita    2000-01-01     LN 3.66  782
## 42 42    p    Wanita    2001-01-01 Swasta 3.25 1123
## 43 43    q      Pria    2002-01-01 Swasta 3.97 1196
## 44 44    r    Wanita    2003-01-01     LN 3.08  877
## 45 45    s      Pria    2000-01-01 Swasta 3.28  769
## 46 46    t    Wanita    2001-01-01 Swasta 3.28  944
## 47 47    u    Wanita    2002-01-01     LN 3.10  880
## 48 48    v      Pria    2003-01-01 Negeri 3.22  909
## 49 49    w    Wanita    2000-01-01 Negeri 3.65  801
## 50 50    x    Wanita    2001-01-01 Swasta 3.28  784
## 51 51    y      Pria    2002-01-01 Swasta 3.17  713
## 52 52    z      Pria    2003-01-01 Negeri 3.57  686
LS0tDQp0aXRsZTogIlR1Z2FzIDMiDQpzdWJ0aXRsZTogIkFsZ29yaXRtYSBkYW4gU3R1cmt0dXIgRGF0YSINCmF1dGhvcjogIkFsYmVydCBBZ3VuZyBQcmF5b2dvICgyMDIwNDkyMDAxOSkiDQpkYXRlOiAiYHIgZm9ybWF0KFN5cy5EYXRlKCksICclQiAlZCwgJVknKWAiDQpvdXRwdXQ6IA0KICBodG1sX2RvY3VtZW50OiANCiAgICBodG1sX2RvY3VtZW50OiBudWxsDQogICAgY29kZV9mb2xkaW5nOiBoaWRlDQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZmxvYXQ6DQogICAgICBjb2xsYXBzZWQ6IHllcw0KICAgIG51bWJlcl9zZWN0aW9uczogeWVzDQogICAgY29kZV9kb3dubG9hZDogeWVzDQogICAgdGhlbWU6IHNhbmRzdG9uZQ0KICAgIGNzczogc3R5bGUxLmNzcw0KICAgIGhpZ2hsaWdodDogbW9ub2Nocm9tZQ0KLS0tDQoNCg0KPGltZyBzdHlsZT0iZmxvYXQ6IHJpZ2h0OyBtYXJnaW46IDBweCAxMDBweCAwcHggMHB4OyB3aWR0aDoyNSUiIHNyYz0ibWUuanBnIi8+IA0KDQpgYGB7ciBsb2dvLCBlY2hvPUZBTFNFLGZpZy5hbGlnbj0nY2VudGVyJywgb3V0LndpZHRoID0gJzMwJSd9DQprbml0cjo6aW5jbHVkZV9ncmFwaGljcygibG9nb21hdGFuYS5wbmciKQ0KYGBgDQoNCkVtYWlsICZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyZuYnNwOzogIGFsYmVydC5wcmF5b2dvOTlAZ21haWwuY29tIDxicj4NClJQdWJzICAmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDs6IGh0dHBzOi8vcnB1YnMuY29tL2FsYmVydDIzODk5IDxicj4NCkp1cnVzYW4gJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOzogW1N0YXRpc3Rpa2FdKGh0dHBzOi8vbWF0YW5hdW5pdmVyc2l0eS5hYy5pZC8/bHk9YWNhZGVtaWMmYz1zYikgPGJyPg0KQWRkcmVzcyAgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7IDogQVJBIENlbnRlciwgTWF0YW5hIFVuaXZlcnNpdHkgVG93ZXIgPGJyPg0KJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsmbmJzcDsgSmwuIENCRCBCYXJhdCBLYXYsIFJULjEsIEN1cnVnIFNhbmdlcmVuZywgS2VsYXBhIER1YSwgVGFuZ2VyYW5nLCBCYW50ZW4gMTU4MTAuDQoNCioqKioNCiMgTWVtYnVhdCBwcm9ncmFtIGRlbmdhbiBsaXN0IFINCkJlcmlrdXQgbWVydXBha2FuIHBlbXJvZ3JhbWFuIHVudHVrIG1lbWJ1YXQgbGlzdCwgbWVtaWxpaCBkYXRhIGRhcmkgbGlzdCBkZW5nYW4gaW5kZWssIGRhbiAgbWVuZ2dhbnRpIGtvbXBvbmVuIGRhcmkgbGlzdA0KYGBge3J9DQpsaXN0MT0gbGlzdCgiRWtvIiwiVmluY2VudCIsIlJ5YW4iLCJLYWthIiwiU2FyYWgiKSAjbGlzdCA1IHRlbWFuIGRla2F0DQpwcmludChsaXN0MSkgI01lbmNldGFrIGxpc3QgNSBvcmFuZyBkZWthdA0KcHJpbnQobGlzdDFbM10pICNNZW5jZXRhayBuYW1hIHRlbWFuIHRlcmRla2F0IGRlbmdhbiBpbmRleA0KbGlzdDFbMV09IlZpdmlhbiIgI01lbmdnYW50aSBuYW1hIEVrbyBkZW5nYW4gVml2aWFuDQpwcmludChsaXN0MSkgI01lbmNldGFrIGxpc3QgMSBzZXRlbGFoIGRpZ2FudGkgbmFtYQ0KbGVuZ3RoKGxpc3QxKSAjTWVuY2V0YWsganVtbGFoIGFuZ2dvdGEgZGFsYW0gbGlzdCAxDQpgYGANCiMgTWVtYnVhdCB0dXBsZSBkZW5nYW4gUg0KQmVyaWt1dCBQZW1yb2dyYW1hbiBSIG1lbWJ1YXQgdHVwbGUgc2VqdW1sYWggNSBpdGVtLCBrZW11ZGlhbiBiYWdhaW1hbmEgbWVuZ2Frc2VzIG5pbGFpIHR1cGxlLCBtZW1vdG9uZyBuaWxhaSB0dXBsZSwgTmVzdGVkIFR1cGxlLCBkYW4gdW5wYWNraW5nIHNlcXVlbmNlIGRlbmdhbiBwZW1yb2dyYW1hbiByDQpgYGB7cn0NCmxpYnJhcnkoc2V0cykNCnR1cGxlMCA9dHVwbGUoIlBhZ2kiKQ0KdHVwbGUxID0gdHVwbGUoIkhhbG8iLCJTZWxhbWF0IiwiU2lhbmciLCJBcGEiLCJLYWJhciIpICNNZW1idWF0IDUgaXRlbSB0dXBsZQ0KcHJpbnQodHVwbGUxKSAjTWVuY2V0YWsgbmlsYWkgdHVwbGUxDQpwcmludCh0dXBsZTFbMl0pICNNZW5nYWtzZXMgbmlsYWkgaXRlbSAyIHR1cGxlMQ0KcHJpbnQodHVwbGUxWzI6NF0pICNNZW1vdG9uZyBuaWxhaSB0dXBsZTEgaXRlbSBrZS0yIGhpbmdnYSBpdGVtIGtlLTQNCnR1cGxlMiA9Yyh0dXBsZTAsdHVwbGUxKSAjTmVzdGVkIFR1cGxlDQpwcmludCh0dXBsZTIpDQp0dXBsZTMgPXJlcCh0dXBsZTEsMikgI1VucGFja2luZyBTZXF1ZW5jZQ0KcHJpbnQodHVwbGUzKQ0KYGBgDQojIE1lbWJ1YXQgRGljdGlvbmFyeQ0KUGVtcm9ncmFtYW4gZGliYXdhaCBtZXJ1cGFrYW4gY2FyYSBtZW1idWF0IGxpYnJhcnkgZGkgUiwgc2VsYWluIGl0dSBqdWdhIGFkYSBjYXJhIHVudHVrIG1lbmdha3NlcyBpc2kgZGljdGlvbmFyeSwgbWVuZ3ViYWggbmlsYWkgaXRlbSBkaWN0aW9uYXJ5LCBkYW4gbWVuZ2hhcHVzIGl0ZW0gZGljdGlvbmFyeS4NCmBgYHtyfQ0KbGlicmFyeShEaWN0KQ0KI01lbWJ1YXQgRGljdGlvbmFyeQ0KbGlicmFyeTEgPSBkaWN0KA0KbmFtYT0iQWxiZXJ0IEFndW5nIiwNCnVtdXI9YXMuaW50ZWdlcigyMiksDQpob2JpPWxpc3QoIk1haW4gTW9iaWxlIExlZ2VuZHMiLCJNdXNpayIsIkNhdHVyIiksDQptZW5pa2FoPUZBTFNFLA0Kc29zbWVkPWRpY3QoaW5zdGFncmFtPSJ0dXR1cGJvdG9sa2VjYXAiLA0KICAgICAgICAgICAgZmFjZWJvb2s9InR1dHVwYm90b2xrZWNhcCINCiAgICAgICAgICAgICkNCikNCnByaW50KGxpYnJhcnkxKQ0KI01lbmdha3NlcyBpc2kgRGljdGlvbmFyeQ0KY2F0KCJOYW1hIHNheWEgYWRhbGFoIDogIixsaWJyYXJ5MSRnZXQoJ25hbWEnKSkNCnByaW50KGxpYnJhcnkxJGdldCgnc29zbWVkJylbJ2luc3RhZ3JhbSddKQ0KI01lbmd1YmFoIG5pbGFpIGl0ZW0gZGljdGlvbmFyeQ0KbGlicmFyeTFbIm5hbWEiXSA9ICJBbGJlcnQgUHJheW9nbyINCiNNZW5naGFwdXMgaXRlbSBkaWN0aW9uYXJ5DQpwcmludChsaWJyYXJ5MSRyZW1vdmUoInVtdXIiKSkNCmBgYA0KIyBNZW1iYW5ndW4gRGF0YSBGcmFtZQ0KYGBge3J9DQpkZjFfUjwtZGF0YS5mcmFtZShrb2RlPWMoMTo1KSwNCiAgICAgICAgICAgICAgICAgIG5hbWE9YygiSnVsaWFuIiwiVmFuZXNzYSIsIkplZmZyeSIsIkFuZ2VsIiwiTmlra2kiKSwNCiAgICAgICAgICAgICAgICAgIGdhamk9Yyg2MjMuMyw1MTUuMiw2MTEuMCw3MjkuMCw4NDMuMjUpLA0KICAgICAgICAgICAgICAgICAgbXVsYWlfa2VyamE9YXMuRGF0ZShjKCIyMDIyLTAxLTAxIiwiMjAyMi0wOS0yMyIsIjIwMjItMTEtMTUiLCIyMDIyLTA1LTExIiwiMjAyMi0wMy0yNyIpKSwNCiAgICAgICAgICAgICAgICAgIGRpdmlzaT1jKCJEUyIsIkRTIiwiQkEiLCJEQSIsIkRTIiksc3RyaW5nQXNGYWN0b3JzPUYpDQpkZjJfUjwtZGF0YS5mcmFtZShrb2RlPWMoNjoxMCksDQogICAgICAgICAgICAgICAgICBuYW1hPWMoIkFyZGlmbyIsIklyZW5lIiwiS2VmYXMiLCJTaGVybHkiLCJCYWt0aSIpLA0KICAgICAgICAgICAgICAgICAgZ2FqaT1jKDU3OC4wLDcyMi41LDYzMi44LDYzMi44LE5BKSwNCiAgICAgICAgICAgICAgICAgIG11bGFpX2tlcmphPWFzLkRhdGUoYygiMjAyMi0wNS0yMSIsIjIwMjItMDctMzAiLCIyMDIyLTA2LTE3IiwiMjAyMi0wNy0zMCIsIjIwMTgtMDktMDMiKSksDQogICAgICAgICAgICAgICAgICBkaXZpc2k9YygiQWN0dWFyaWVzIiwiQWN0dWFyaWVzIiwiQ0EiLCJERSIsIkxlY3R1cmVyIiksc3RyaW5nQXNGYWN0b3JzPUYpDQpkZjNfUjwtcmJpbmQoZGYxX1IsZGYyX1IpICNNZW5nZ2FidW5na2FuIGRhdGEgZnJhbWUNCnByaW50KGRmM19SKSAjTWVuY2V0YWsgZGF0YWZyYW1lIGdhYnVuZ2FuDQpoZWFkKGRmM19SLDYpICNNZW5jZXRhayA2IGJhcmlzIHBlcnRhbWEgZGF0YSBmcmFtZQ0KdGFpbChkZjNfUiw2KSAjTWVuY2V0YWs2IGJhcmlzIHRlcmFraGlyIGRhdGEgZnJhbWUNCmNsYXNzKGRmM19SKSAjTWVuY2V0YWsgdGlwZSBkYXRhLmZhbWUNCnN0cihkZjNfUikgI01lbmNldGFrIHRpcGUgc3RydWt0dXIgZGF0YQ0KZGltKGRmM19SKSAjTWVuY2V0YWsgZGltZW5zaSBkYXRhIGZyYW1lDQpzdW1tYXJ5KGRmM19SKSAjcmluZ2thc2FuIGRhdGEgZnJhbWUNCg0KDQoNCmBgYA0KIyBSZWtheWFzYSBEYXRhIEZyYW1lDQpgYGB7cn0NCk5vPC0oMTo1MikgI01lbmdoYXNpbGthbiBOb21vciAxIGhpbmdnYSA1Mg0KTmFtYTwtYyhMRVRURVJTLGxldHRlcnMpICNNZW5naGFzaWxrYW4gaHVydWYga2FwaXRhbCBkYW4gbm9uLWthcGl0YWwNCkplbmlzX0tlbGFtaW4gPC1zYW1wbGUocmVwKGMoIlByaWEiLCJXYW5pdGEiKSx0aW1lcz0yNikpICNKZW5pcyBLZWxhbWluDQojTWVuZ2hhc2lsa2FuIHRhbmdnYWwgbGFoaXIgZGVuZ2FuIHRpbWUgc2VyaWVzDQpUaWdhX1RhaHVuPC1zZXEoYXMuRGF0ZSgiMjAwMC8wMS8wMSIpLCBieT0ieWVhciIsIGxlbmd0aC5vdXQ9NCkNClRhbmdnYWxfTGFoaXI8LXJlcChUaWdhX1RhaHVuLHRpbWVzPTEzKQ0KI0thdGVnb3JpIFVuaXZlcnNpdGFzDQp1bml2MTwtcmVwKCJOZWdlcmkiLHRpbWVzPTI2KSAjTWVuY2V0YWsgYXNhbCB1bml2ZXJzaXRhcyBuZWdlcmkgc2ViYW55YWsgMjYNCnVuaXYyPC1yZXAoIlN3YXN0YSIsdGltZXM9MTYpICNNZW5jZXRhayBhc2FsIHVuaXZlcnNpdGFzIHN3YXN0YSBzZWJhbnlhayAxNg0KdW5pdjM8LXJlcCgiTE4iLHRpbWVzPTEwKSAjTWVuY2V0YWsgYXNhbCB1bml2ZXJzdGlhcyBsdWFyIG5lZ2VyaSBzZWJhbnlhayAxMA0KVW5pdmVyc2l0YXM8LXNhbXBsZShjKHVuaXYxLHVuaXYyLHVuaXYzKSkgI01lbmdnYWJ1bmdrYW4gbGlzdCBkaWF0YXMNCmdwYTwtcnVuaWYoNTIsbWluID0gMy4wMCxtYXggPSA0LjAwKSAjTWVuZ2hhc2lsa2FuIDUyIGFuZ2thIGFjYWsNCkdQQTwtcm91bmQoZ3BhLGRpZ2l0cyA9IDIpICNNZW5nYXR1ciBkaWdpdCBhbmdrYQ0KR2FqaTwtc2FtcGxlKDYwMDoxMjAwLDUyLHJlcGxhY2U9VCkgI01lbmdoYXNpbGthbiBzYW1wZWwgYW50YXJhIDYwMC0xMjAwDQpLYXJ5YXdhbl9SPC1kYXRhLmZyYW1lKE5vLA0KICAgICAgICAgICAgICAgICAgICAgICBOYW1hLA0KICAgICAgICAgICAgICAgICAgICAgICBKZW5pc19LZWxhbWluLA0KICAgICAgICAgICAgICAgICAgICAgICBUYW5nZ2FsX0xhaGlyLA0KICAgICAgICAgICAgICAgICAgICAgICBVbml2ZXJzaXRhcywNCiAgICAgICAgICAgICAgICAgICAgICAgR1BBLEdhamkpDQpwcmludChLYXJ5YXdhbl9SKQ0KYGBgDQojIEVrc3RyYXNpIERhdGEgRnJhbWUNCmBgYHtyfQ0KdHlwZW9mKEthcnlhd2FuX1IpICNNZW5jZXRhayB0aXBlIGRhdGENCmNsYXNzKEthcnlhd2FuX1IpICNNZW5jZXRhayB0aXBlIGRhdGENCkthcnlhd2FuX1JbMSw1XSAjTWVuZ2Vrc3RyYWsgZGF0YSBiYXJpcyAxIGRhbiBrb2xvbSA1DQpLYXJ5YXdhbl9SJE5hbWEgI01lbmdla3N0cmFrIGtvbG9tIG5hbWENCkthcnlhd2FuX1JbLGMoJ05hbWEnLCdKZW5pc19LZWxhbWluJyldICMgRWtzdHJhayBzcGVzaWZpayBrb2xvbSBuYW1hIGRhbiBqZW5pcyBrZWxhbWluDQpLYXJ5YXdhbl9SWzE6NSxdICNNZW5jZXRhayBsaW1hIGJhcmlzIHBlcnRhbWENCkthcnlhd2FuX1JbLDE6NV0gI01lbmNldGFrIGxpbWEga29sb20gcGVydGFtYQ0Kc3Vic2V0KEthcnlhd2FuX1Isc2VsZWN0ID0gR1BBKSAjU3Vic2V0IEtvbG9tIEdQQQ0Kc3Vic2V0KEthcnlhd2FuX1Isc2VsZWN0ID0gNikgI1N1YnNldCBLb2xvbSBrZSA2DQpzdWJzZXQoS2FyeWF3YW5fUixzZWxlY3QgPSBjKDEsMikpICNTdWJzZXQga29sb20gcGVydGFtYSBkYW4ga2VkdWENCnN1YnNldChLYXJ5YXdhbl9SLHNlbGVjdCA9IGMoMjo1KSkgI1N1YnNldCBrb2xvbSBrZWR1YSBoaW5nZ2Ega2VsaW1hDQpgYGANCiMgTWVuZ2dhbnRpIE5hbWEgVmFyaWFiZWwNCmBgYHtyfQ0KcmVuYW1lXzE8LUthcnlhd2FuX1INCm5hbWVzKHJlbmFtZV8xKTwtYygibm8iLA0KICAgICAgICAgICAgICAgICAgICJuYW1hIiwNCiAgICAgICAgICAgICAgICAgICAidGdsLmxhaGlyIiwNCiAgICAgICAgICAgICAgICAgICAiamVuaXMua2VsYW1pbiIsDQogICAgICAgICAgICAgICAgICAgInVuaXYiLA0KICAgICAgICAgICAgICAgICAgICJpcGsiLA0KICAgICAgICAgICAgICAgICAgICJnYWppIikNCnJlbmFtZV8xDQpgYGANCg0KDQo=