la normalité va nous permettre de choisir le type de test pour comparer les données Un test de shapiro pour valider la normalité si la p-value est<0.05 la normalité n’est pas accepté on fait donc un test de Wilcoxon Si la normalité est respecté on fait le test de Student
shapiro.test(Ig$age_inclusion[Ig$IgG3_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$age_inclusion[Ig$IgG3_Exces == "Oui"]
## W = 0.91391, p-value = 0.04941
la normalité est acceptée: T-test de Student
shapiro.test(Ig$age_inclusion[Ig$IgG3_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$age_inclusion[Ig$IgG3_Exces == "Non"]
## W = 0.97336, p-value = 0.00021
Student
shapiro.test(Ig$IMC[Ig$IgG3_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$IMC[Ig$IgG3_Exces == "Oui"]
## W = 0.93305, p-value = 0.2723
Wilcoxon
shapiro.test(Ig$IMC[Ig$IgG3_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$IMC[Ig$IgG3_Exces == "Non"]
## W = 0.84363, p-value = 1.956e-11
Student
shapiro.test(Ig$Nb_Exa_an.sans_biotherapie[Ig$IgG3_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Nb_Exa_an.sans_biotherapie[Ig$IgG3_Exces == "Oui"]
## W = 0.63661, p-value = 3.379e-06
Student
shapiro.test(Ig$Nb_Exa_an.sans_biotherapie[Ig$IgG3_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Nb_Exa_an.sans_biotherapie[Ig$IgG3_Exces == "Non"]
## W = 0.3831, p-value < 2.2e-16
Student
shapiro.test(Ig$Corticoïde.systémique..dose.[Ig$IgG3_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Corticoïde.systémique..dose.[Ig$IgG3_Exces == "Oui"]
## W = 0.51425, p-value = 1.793e-07
Student
shapiro.test(Ig$Corticoïde.systémique..dose.[Ig$IgG3_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Corticoïde.systémique..dose.[Ig$IgG3_Exces == "Non"]
## W = 0.52324, p-value < 2.2e-16
Student
shapiro.test(Ig$CSI_µg[Ig$IgG3_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$CSI_µg[Ig$IgG3_Exces == "Oui"]
## W = 0.86595, p-value = 0.005368
la normalité est acceptée : T de Student
shapiro.test(Ig$CSI_µg[Ig$IgG3_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$CSI_µg[Ig$IgG3_Exces == "Non"]
## W = 0.87403, p-value = 1.134e-12
student
shapiro.test(Ig$Montélukast[Ig$IgG3_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Montélukast[Ig$IgG3_Exces == "Oui"]
## W = 0.63917, p-value = 2.502e-06
Student
shapiro.test(Ig$Montélukast[Ig$IgG3_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Montélukast[Ig$IgG3_Exces == "Non"]
## W = 0.60566, p-value < 2.2e-16
student
shapiro.test(Ig$Rep_biotherapie_GETE[Ig$IgG3_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Rep_biotherapie_GETE[Ig$IgG3_Exces == "Oui"]
## W = 0.48412, p-value = 6.065e-08
la normalité est acceptée : t-test de Student
shapiro.test(Ig$Rep_biotherapie_GETE[Ig$IgG3_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Rep_biotherapie_GETE[Ig$IgG3_Exces == "Non"]
## W = 0.65893, p-value < 2.2e-16
Student
shapiro.test(Ig$VEMS_pre_B2_L[Ig$IgG3_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$VEMS_pre_B2_L[Ig$IgG3_Exces == "Oui"]
## W = 0.94908, p-value = 0.3534
Wilcoxon
shapiro.test(Ig$VEMS_pre_B2_L[Ig$IgG3_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$VEMS_pre_B2_L[Ig$IgG3_Exces == "Non"]
## W = 0.97651, p-value = 0.001829
student
shapiro.test(Ig$VEMS_PreB2_Pct[Ig$IgG3_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$VEMS_PreB2_Pct[Ig$IgG3_Exces == "Oui"]
## W = 0.87331, p-value = 0.01344
la normalité est acceptée : t-test de Student
shapiro.test(Ig$VEMS_PreB2_Pct[Ig$IgG3_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$VEMS_PreB2_Pct[Ig$IgG3_Exces == "Non"]
## W = 0.98155, p-value = 0.008136
Student
shapiro.test(Ig$Tiffenau[Ig$IgG3_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Tiffenau[Ig$IgG3_Exces == "Oui"]
## W = 0.98204, p-value = 0.9576
Wilcoxon
shapiro.test(Ig$Tiffenau[Ig$IgG3_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Tiffenau[Ig$IgG3_Exces == "Non"]
## W = 0.98833, p-value = 0.09569
Wilcoxon
shapiro.test(Ig$FeNo[Ig$IgG3_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$FeNo[Ig$IgG3_Exces == "Non"]
## W = 0.79489, p-value = 4.306e-12
Student
shapiro.test(Ig$FeNo[Ig$IgG3_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$FeNo[Ig$IgG3_Exces == "Oui"]
## W = 0.73914, p-value = 0.002632
Student
shapiro.test(Ig$PNE_G_L[Ig$IgG3_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$PNE_G_L[Ig$IgG3_Exces == "Oui"]
## W = 0.74793, p-value = 6.273e-05
Student
shapiro.test(Ig$PNE_G_L[Ig$IgG3_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$PNE_G_L[Ig$IgG3_Exces == "Non"]
## W = 0.6906, p-value < 2.2e-16
student
shapiro.test(Ig$IgE_Total[Ig$IgG3_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$IgE_Total[Ig$IgG3_Exces == "Oui"]
## W = 0.72288, p-value = 5.384e-05
Student
shapiro.test(Ig$IgE_Total[Ig$IgG3_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$IgE_Total[Ig$IgG3_Exces == "Non"]
## W = 0.30682, p-value < 2.2e-16
Student
t.test(Ig$age_inclusion~Ig$IgG3_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$age_inclusion by Ig$IgG3_Exces
## t = 1.5055, df = 256, p-value = 0.1334
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.58289 11.86014
## sample estimates:
## mean in group Non mean in group Oui
## 53.39515 48.25652
L’hypothèse nulle d’égalité des moyennes n’ est pas rejetée car la p-value est > 0.05.il n’y a pas de relation significative
wilcox.test(Ig$IMC~Ig$IgG3_Exces, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$IMC by Ig$IgG3_Exces
## W = 1108, p-value = 0.5606
## alternative hypothesis: true location shift is not equal to 0
pas de relation entre les deux variables
t.test(Ig$Nb_Exa_an.sans_biotherapie~Ig$IgG3_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$Nb_Exa_an.sans_biotherapie by Ig$IgG3_Exces
## t = -0.26688, df = 207, p-value = 0.7898
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4.260890 3.244847
## sample estimates:
## mean in group Non mean in group Oui
## 4.491979 5.000000
t.test(Ig$Corticoïde.systémique..dose.~Ig$IgG3_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$Corticoïde.systémique..dose. by Ig$IgG3_Exces
## t = 0.47676, df = 229, p-value = 0.634
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4.429460 7.257211
## sample estimates:
## mean in group Non mean in group Oui
## 6.186603 4.772727
t.test(Ig$CSI_µg~Ig$IgG3_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$CSI_µg by Ig$IgG3_Exces
## t = -2.0977, df = 245, p-value = 0.03696
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1119.56677 -35.23447
## sample estimates:
## mean in group Non mean in group Oui
## 1551.643 2129.043
t.test(Ig$Montélukast~Ig$IgG3_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$Montélukast by Ig$IgG3_Exces
## t = -1.569, df = 254, p-value = 0.1179
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.37326736 0.04223545
## sample estimates:
## mean in group Non mean in group Oui
## 0.3562232 0.5217391
t.test(Ig$Rep_biotherapie_GETE~Ig$IgG3_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$Rep_biotherapie_GETE by Ig$IgG3_Exces
## t = 1.202, df = 242, p-value = 0.2305
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.2701826 1.1161397
## sample estimates:
## mean in group Non mean in group Oui
## 1.0316742 0.6086957
wilcox.test(Ig$VEMS_pre_B2_L~Ig$IgG3_Exces, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$VEMS_pre_B2_L by Ig$IgG3_Exces
## W = 2479.5, p-value = 0.09389
## alternative hypothesis: true location shift is not equal to 0
t.test(Ig$VEMS_PreB2_Pct~Ig$IgG3_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$VEMS_PreB2_Pct by Ig$IgG3_Exces
## t = 2.1129, df = 225, p-value = 0.03571
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.7994141 22.9304410
## sample estimates:
## mean in group Non mean in group Oui
## 74.14493 62.28000
la relation entre la VEMS% et les patients les IgG3 en excès est significative
wilcox.test(Ig$Tiffenau~Ig$IgG3_Exces, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$Tiffenau by Ig$IgG3_Exces
## W = 2450, p-value = 0.1275
## alternative hypothesis: true location shift is not equal to 0
Le test ne met pas en évidence de relation
t.test(Ig$FeNo~Ig$IgG3_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$FeNo by Ig$IgG3_Exces
## t = 1.7419, df = 136, p-value = 0.0838
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.558612 40.374237
## sample estimates:
## mean in group Non mean in group Oui
## 37.00781 18.10000
t.test(Ig$PNE_G_L~Ig$IgG3_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$PNE_G_L by Ig$IgG3_Exces
## t = 0.91881, df = 233, p-value = 0.3591
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1034390 0.2842306
## sample estimates:
## mean in group Non mean in group Oui
## 0.3556132 0.2652174
t.test(Ig$IgE_Total~Ig$IgG3_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$IgE_Total by Ig$IgG3_Exces
## t = -0.061382, df = 179, p-value = 0.9511
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -484.2767 455.0576
## sample estimates:
## mean in group Non mean in group Oui
## 408.7237 423.3333
comp_qual <- read.csv("C:/Users/mallah.s/Desktop/StatsTheses/Mauro anthony/comp_qual.csv", sep=";", stringsAsFactors=TRUE)
Pour le test de liaison entre deux variables qualitative: verification de la normalité -> selon la validation de la normalité :test de Chi2 ou test de fisher
le test du χ2 d’indépendance sert à étudier la liaison entre deux caractères qualitatifs XetY, lorsque les conditions ne sont pas remplies, il existe des corrections,dans notre cas je vais utiliser le tests exacts de Fisher
xtabs(~Sexe+IgG3_Exces, data=comp_qual)
## IgG3_Exces
## Sexe Non Oui
## F 137 17
## M 98 6
chisq.test(comp_qual$Sexe,comp_qual$IgG3_Exces)$expected
## comp_qual$IgG3_Exces
## comp_qual$Sexe Non Oui
## F 140.27132 13.728682
## M 94.72868 9.271318
chisq.test(comp_qual$Sexe,comp_qual$IgG3_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$Sexe and comp_qual$IgG3_Exces
## X-squared = 2.123, df = 1, p-value = 0.1451
fisher.test(comp_qual$Sexe,comp_qual$IgG3_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Sexe and comp_qual$IgG3_Exces
## p-value = 0.1833
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.153973 1.374774
## sample estimates:
## odds ratio
## 0.4946569
les variables Sexe et deficit d’IgG sont independantes
xtabs(~Montélukast+IgG3_Exces, data=comp_qual)
## IgG3_Exces
## Montélukast Non Oui
## Non 150 11
## Oui 83 12
chisq.test(comp_qual$Montélukast,comp_qual$IgG3_Exces)$expected
## comp_qual$IgG3_Exces
## comp_qual$Montélukast Non Oui
## Non 146.53516 14.464844
## Oui 86.46484 8.535156
chisq.test(comp_qual$Montélukast,comp_qual$IgG3_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$Montélukast and comp_qual$IgG3_Exces
## X-squared = 2.4573, df = 1, p-value = 0.117
fisher.test(comp_qual$Montélukast,comp_qual$IgG3_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Montélukast and comp_qual$IgG3_Exces
## p-value = 0.1732
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.7572168 5.1564772
## sample estimates:
## odds ratio
## 1.966062
Pour les IgG en deficit, il y’a seulement 3 qui sont traités par Montélukast, donc pas assez de patients, ce qui explique le le resultats de la p-value du test exact de fisher
xtabs(~Biotherapie+IgG3_Exces, data=comp_qual)
## IgG3_Exces
## Biotherapie Non Oui
## Non 149 19
## Oui 86 4
chisq.test(comp_qual$Biotherapie,comp_qual$IgG3_Exces)$expected
## comp_qual$IgG3_Exces
## comp_qual$Biotherapie Non Oui
## Non 153.02326 14.976744
## Oui 81.97674 8.023256
chisq.test(comp_qual$Biotherapie,comp_qual$IgG3_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$Biotherapie and comp_qual$IgG3_Exces
## X-squared = 3.4015, df = 1, p-value = 0.06514
fisher.test(comp_qual$Biotherapie,comp_qual$IgG3_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Biotherapie and comp_qual$IgG3_Exces
## p-value = 0.07052
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.08765357 1.15090505
## sample estimates:
## odds ratio
## 0.3659675
xtabs(~Biothérapie_type+IgG3_Exces, data=comp_qual)
## IgG3_Exces
## Biothérapie_type Non Oui
## Benralizumab 10 0
## Dupilumab 2 2
## Mepolizumab 50 2
## Omalixumab 24 0
chisq.test(comp_qual$Biothérapie_type,comp_qual$IgG3_Exces)$expected
## Warning in chisq.test(comp_qual$Biothérapie_type, comp_qual$IgG3_Exces): Chi-
## squared approximation may be incorrect
## comp_qual$IgG3_Exces
## comp_qual$Biothérapie_type Non Oui
## Benralizumab 9.555556 0.4444444
## Dupilumab 3.822222 0.1777778
## Mepolizumab 49.688889 2.3111111
## Omalixumab 22.933333 1.0666667
chisq.test(comp_qual$Biothérapie_type,comp_qual$IgG3_Exces, correct=FALSE)
## Warning in chisq.test(comp_qual$Biothérapie_type, comp_qual$IgG3_Exces, : Chi-
## squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Biothérapie_type and comp_qual$IgG3_Exces
## X-squared = 21.172, df = 3, p-value = 9.697e-05
fisher.test(comp_qual$Biothérapie_type,comp_qual$IgG3_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Biothérapie_type and comp_qual$IgG3_Exces
## p-value = 0.01425
## alternative hypothesis: two.sided
xtabs(~Tabac+IgG3_Exces, data=comp_qual)
## IgG3_Exces
## Tabac Non Oui
## Actif 21 4
## Non 83 8
## Passif 8 2
## Sevré 78 7
chisq.test(comp_qual$Tabac,comp_qual$IgG3_Exces)$expected
## Warning in chisq.test(comp_qual$Tabac, comp_qual$IgG3_Exces): Chi-squared
## approximation may be incorrect
## comp_qual$IgG3_Exces
## comp_qual$Tabac Non Oui
## Actif 22.511848 2.4881517
## Non 81.943128 9.0568720
## Passif 9.004739 0.9952607
## Sevré 76.540284 8.4597156
chisq.test(comp_qual$Tabac,comp_qual$IgG3_Exces, correct=FALSE)
## Warning in chisq.test(comp_qual$Tabac, comp_qual$IgG3_Exces, correct = FALSE):
## Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Tabac and comp_qual$IgG3_Exces
## X-squared = 2.5632, df = 3, p-value = 0.464
fisher.test(comp_qual$Tabac,comp_qual$IgG3_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Tabac and comp_qual$IgG3_Exces
## p-value = 0.3527
## alternative hypothesis: two.sided
xtabs(~Atopie+IgG3_Exces, data=comp_qual)
## IgG3_Exces
## Atopie Non Oui
## Non 147 13
## Oui 88 10
chisq.test(comp_qual$Atopie,comp_qual$IgG3_Exces)$expected
## comp_qual$IgG3_Exces
## comp_qual$Atopie Non Oui
## Non 145.73643 14.263566
## Oui 89.26357 8.736434
chisq.test(comp_qual$Atopie,comp_qual$IgG3_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$Atopie and comp_qual$IgG3_Exces
## X-squared = 0.32353, df = 1, p-value = 0.5695
fisher.test(comp_qual$Atopie,comp_qual$IgG3_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Atopie and comp_qual$IgG3_Exces
## p-value = 0.6539
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.4818549 3.3229206
## sample estimates:
## odds ratio
## 1.283666
xtabs(~FeNo_sup_20_ppb+IgG3_Exces, data=comp_qual)
## IgG3_Exces
## FeNo_sup_20_ppb Non Oui
## Non 49 7
## Oui 79 3
chisq.test(comp_qual$FeNo_sup_20_ppb,comp_qual$IgG3_Exces)$expected
## Warning in chisq.test(comp_qual$FeNo_sup_20_ppb, comp_qual$IgG3_Exces): Chi-
## squared approximation may be incorrect
## comp_qual$IgG3_Exces
## comp_qual$FeNo_sup_20_ppb Non Oui
## Non 51.94203 4.057971
## Oui 76.05797 5.942029
chisq.test(comp_qual$FeNo_sup_20_ppb,comp_qual$IgG3_Exces, correct=FALSE)
## Warning in chisq.test(comp_qual$FeNo_sup_20_ppb, comp_qual$IgG3_Exces, correct =
## FALSE): Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$FeNo_sup_20_ppb and comp_qual$IgG3_Exces
## X-squared = 3.8701, df = 1, p-value = 0.04915
fisher.test(comp_qual$FeNo_sup_20_ppb,comp_qual$IgG3_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$FeNo_sup_20_ppb and comp_qual$IgG3_Exces
## p-value = 0.08994
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.04279835 1.24369022
## sample estimates:
## odds ratio
## 0.2684385
xtabs(~PNN_sup_5+IgG3_Exces, data=comp_qual)
## IgG3_Exces
## PNN_sup_5 Non Oui
## Non 98 8
## Oui 116 14
chisq.test(comp_qual$PNN_sup_5,comp_qual$IgG3_Exces)$expected
## comp_qual$IgG3_Exces
## comp_qual$PNN_sup_5 Non Oui
## Non 96.11864 9.881356
## Oui 117.88136 12.118644
chisq.test(comp_qual$PNN_sup_5,comp_qual$IgG3_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$PNN_sup_5 and comp_qual$IgG3_Exces
## X-squared = 0.71712, df = 1, p-value = 0.3971
fisher.test(comp_qual$PNN_sup_5,comp_qual$IgG3_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$PNN_sup_5 and comp_qual$IgG3_Exces
## p-value = 0.5014
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.5508048 4.2399968
## sample estimates:
## odds ratio
## 1.47605
Les deux variable sont independantes
xtabs(~PNE_sup_0.15G_L+IgG3_Exces, data=comp_qual)
## IgG3_Exces
## PNE_sup_0.15G_L Non Oui
## Non 88 10
## Oui 124 13
chisq.test(comp_qual$PNE_sup_0.15G_L,comp_qual$IgG3_Exces)$expected
## comp_qual$IgG3_Exces
## comp_qual$PNE_sup_0.15G_L Non Oui
## Non 88.40851 9.591489
## Oui 123.59149 13.408511
chisq.test(comp_qual$PNE_sup_0.15G_L,comp_qual$IgG3_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$PNE_sup_0.15G_L and comp_qual$IgG3_Exces
## X-squared = 0.033083, df = 1, p-value = 0.8557
fisher.test(comp_qual$PNE_sup_0.15G_L,comp_qual$IgG3_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$PNE_sup_0.15G_L and comp_qual$IgG3_Exces
## p-value = 1
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.355467 2.466360
## sample estimates:
## odds ratio
## 0.9228993
xtabs(~PNE_sup_0.3.G_L+IgG3_Exces, data=comp_qual)
## IgG3_Exces
## PNE_sup_0.3.G_L Non Oui
## Non 118 15
## Oui 94 8
chisq.test(comp_qual$PNE_sup_0.3.G_L,comp_qual$IgG3_Exces)$expected
## comp_qual$IgG3_Exces
## comp_qual$PNE_sup_0.3.G_L Non Oui
## Non 119.98298 13.017021
## Oui 92.01702 9.982979
chisq.test(comp_qual$PNE_sup_0.3.G_L,comp_qual$IgG3_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$PNE_sup_0.3.G_L and comp_qual$IgG3_Exces
## X-squared = 0.77148, df = 1, p-value = 0.3798
fisher.test(comp_qual$PNE_sup_0.3.G_L,comp_qual$IgG3_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$PNE_sup_0.3.G_L and comp_qual$IgG3_Exces
## p-value = 0.5073
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.2356114 1.7708934
## sample estimates:
## odds ratio
## 0.6706184
xtabs(~CRP_sup_5.mg_l+IgG3_Exces, data=comp_qual)
## IgG3_Exces
## CRP_sup_5.mg_l Non Oui
## Non 101 5
## Oui 42 7
chisq.test(comp_qual$CRP_sup_5.mg_l,comp_qual$IgG3_Exces)$expected
## Warning in chisq.test(comp_qual$CRP_sup_5.mg_l, comp_qual$IgG3_Exces): Chi-
## squared approximation may be incorrect
## comp_qual$IgG3_Exces
## comp_qual$CRP_sup_5.mg_l Non Oui
## Non 97.79355 8.206452
## Oui 45.20645 3.793548
chisq.test(comp_qual$CRP_sup_5.mg_l,comp_qual$IgG3_Exces, correct=FALSE)
## Warning in chisq.test(comp_qual$CRP_sup_5.mg_l, comp_qual$IgG3_Exces, correct =
## FALSE): Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$CRP_sup_5.mg_l and comp_qual$IgG3_Exces
## X-squared = 4.2956, df = 1, p-value = 0.03821
fisher.test(comp_qual$CRP_sup_5.mg_l,comp_qual$IgG3_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$CRP_sup_5.mg_l and comp_qual$IgG3_Exces
## p-value = 0.0524
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.8568731 14.1292543
## sample estimates:
## odds ratio
## 3.336814
xtabs(~IgE_Total_sup_30_kUA_l+IgG3_Exces, data=comp_qual)
## IgG3_Exces
## IgE_Total_sup_30_kUA_l Non Oui
## Non 28 2
## Oui 132 19
chisq.test(comp_qual$IgE_Total_sup_30_kUA_l,comp_qual$IgG3_Exces)$expected
## Warning in chisq.test(comp_qual$IgE_Total_sup_30_kUA_l, comp_qual$IgG3_Exces):
## Chi-squared approximation may be incorrect
## comp_qual$IgG3_Exces
## Non Oui
## Non 26.51934 3.480663
## Oui 133.48066 17.519337
chisq.test(comp_qual$IgE_Total_sup_30_kUA_l,comp_qual$IgG3_Exces, correct=FALSE)
## Warning in chisq.test(comp_qual$IgE_Total_sup_30_kUA_l, comp_qual$IgG3_Exces, :
## Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$IgE_Total_sup_30_kUA_l and comp_qual$IgG3_Exces
## X-squared = 0.8541, df = 1, p-value = 0.3554
fisher.test(comp_qual$IgE_Total_sup_30_kUA_l,comp_qual$IgG3_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$IgE_Total_sup_30_kUA_l and comp_qual$IgG3_Exces
## p-value = 0.5354
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.4418997 18.7738998
## sample estimates:
## odds ratio
## 2.008838
xtabs(~Profil_T2+IgG3_Exces, data=comp_qual)
## IgG3_Exces
## Profil_T2 Non Oui
## Neg 78 7
## Pos 42 3
chisq.test(comp_qual$Profil_T2,comp_qual$IgG3_Exces)$expected
## Warning in chisq.test(comp_qual$Profil_T2, comp_qual$IgG3_Exces): Chi-squared
## approximation may be incorrect
## comp_qual$IgG3_Exces
## comp_qual$Profil_T2 Non Oui
## Neg 78.46154 6.538462
## Pos 41.53846 3.461538
chisq.test(comp_qual$Profil_T2,comp_qual$IgG3_Exces, correct=FALSE)
## Warning in chisq.test(comp_qual$Profil_T2, comp_qual$IgG3_Exces, correct =
## FALSE): Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Profil_T2 and comp_qual$IgG3_Exces
## X-squared = 0.10196, df = 1, p-value = 0.7495
fisher.test(comp_qual$Profil_T2,comp_qual$IgG3_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Profil_T2 and comp_qual$IgG3_Exces
## p-value = 1
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.1265426 3.7208357
## sample estimates:
## odds ratio
## 0.797294
xtabs(~Rep_biotherapie_GETE+IgG3_Exces, data=comp_qual)
## IgG3_Exces
## Rep_biotherapie_GETE Non Oui
## 162 19
## Aggravation 9 0
## Bonne 25 0
## Excellent 5 0
## Faible 26 2
## modérée 8 2
chisq.test(comp_qual$Rep_biotherapie_GETE,comp_qual$IgG3_Exces)$expected
## Warning in chisq.test(comp_qual$Rep_biotherapie_GETE, comp_qual$IgG3_Exces):
## Chi-squared approximation may be incorrect
## comp_qual$IgG3_Exces
## comp_qual$Rep_biotherapie_GETE Non Oui
## 164.864341 16.1356589
## Aggravation 8.197674 0.8023256
## Bonne 22.771318 2.2286822
## Excellent 4.554264 0.4457364
## Faible 25.503876 2.4961240
## modérée 9.108527 0.8914729
chisq.test(comp_qual$Rep_biotherapie_GETE,comp_qual$IgG3_Exces, correct=FALSE)
## Warning in chisq.test(comp_qual$Rep_biotherapie_GETE, comp_qual$IgG3_Exces, :
## Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Rep_biotherapie_GETE and comp_qual$IgG3_Exces
## X-squared = 5.9969, df = 5, p-value = 0.3065
fisher.test(comp_qual$Rep_biotherapie_GETE,comp_qual$IgG3_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Rep_biotherapie_GETE and comp_qual$IgG3_Exces
## p-value = 0.341
## alternative hypothesis: two.sided