la normalité va nous permettre de choisir le type de test pour comparer les données Un test de shapiro pour valider la normalité si la p-value est<0.05 la normalité n’est pas accepté on fait donc un test de Wilcoxon Si la normalité est respecté on fait le test de Student
shapiro.test(Ig$age_inclusion[Ig$IgG2_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$age_inclusion[Ig$IgG2_Exces == "Oui"]
## W = 0.95778, p-value = 0.2093
Wilcoxon
shapiro.test(Ig$age_inclusion[Ig$IgG2_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$age_inclusion[Ig$IgG2_Exces == "Non"]
## W = 0.97372, p-value = 0.000349
student
shapiro.test(Ig$IMC[Ig$IgG2_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$IMC[Ig$IgG2_Exces == "Oui"]
## W = 0.67554, p-value = 9.712e-06
la normalité est acceptée: T-test de Student
shapiro.test(Ig$IMC[Ig$IgG2_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$IMC[Ig$IgG2_Exces == "Non"]
## W = 0.95126, p-value = 5.299e-05
student
shapiro.test(Ig$Nb_Exa_an.sans_biotherapie[Ig$IgG2_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Nb_Exa_an.sans_biotherapie[Ig$IgG2_Exces == "Oui"]
## W = 0.86295, p-value = 0.002102
student
shapiro.test(Ig$Nb_Exa_an.sans_biotherapie[Ig$IgG2_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Nb_Exa_an.sans_biotherapie[Ig$IgG2_Exces == "Non"]
## W = 0.37663, p-value < 2.2e-16
Student
shapiro.test(Ig$Corticoïde.systémique..dose.[Ig$IgG2_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Corticoïde.systémique..dose.[Ig$IgG2_Exces == "Oui"]
## W = 0.43556, p-value = 1.763e-09
Student
shapiro.test(Ig$Corticoïde.systémique..dose.[Ig$IgG2_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Corticoïde.systémique..dose.[Ig$IgG2_Exces == "Non"]
## W = 0.52583, p-value < 2.2e-16
Student
shapiro.test(Ig$CSI_µg[Ig$IgG2_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$CSI_µg[Ig$IgG2_Exces == "Oui"]
## W = 0.85205, p-value = 0.0005605
la normalité est acceptée : T test de student
shapiro.test(Ig$CSI_µg[Ig$IgG2_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$CSI_µg[Ig$IgG2_Exces == "Non"]
## W = 0.87501, p-value = 2.376e-12
Student
shapiro.test(Ig$Montélukast[Ig$IgG2_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Montélukast[Ig$IgG2_Exces == "Oui"]
## W = 0.63269, p-value = 5.288e-08
Student
shapiro.test(Ig$Montélukast[Ig$IgG2_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Montélukast[Ig$IgG2_Exces == "Non"]
## W = 0.60744, p-value < 2.2e-16
Student
shapiro.test(Ig$Rep_biotherapie_GETE[Ig$IgG2_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Rep_biotherapie_GETE[Ig$IgG2_Exces == "Oui"]
## W = 0.58141, p-value = 4.361e-08
la normalité est acceptée : t-test de Student
shapiro.test(Ig$Rep_biotherapie_GETE[Ig$IgG2_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Rep_biotherapie_GETE[Ig$IgG2_Exces == "Non"]
## W = 0.65403, p-value < 2.2e-16
Student
shapiro.test(Ig$VEMS_pre_B2_L[Ig$IgG2_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$VEMS_pre_B2_L[Ig$IgG2_Exces == "Oui"]
## W = 0.93689, p-value = 0.09211
Wilcoxon
shapiro.test(Ig$VEMS_pre_B2_L[Ig$IgG2_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$VEMS_pre_B2_L[Ig$IgG2_Exces == "Non"]
## W = 0.97659, p-value = 0.002462
Student
shapiro.test(Ig$VEMS_PreB2_Pct[Ig$IgG2_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$VEMS_PreB2_Pct[Ig$IgG2_Exces == "Oui"]
## W = 0.92247, p-value = 0.03524
la normalité est acceptée : t-test de Student
shapiro.test(Ig$VEMS_PreB2_Pct[Ig$IgG2_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$VEMS_PreB2_Pct[Ig$IgG2_Exces == "Non"]
## W = 0.97736, p-value = 0.002726
Student
shapiro.test(Ig$Tiffenau[Ig$IgG2_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Tiffenau[Ig$IgG2_Exces == "Oui"]
## W = 0.95848, p-value = 0.3208
Wilcoxon
shapiro.test(Ig$Tiffenau[Ig$IgG2_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Tiffenau[Ig$IgG2_Exces == "Non"]
## W = 0.98974, p-value = 0.1766
Wilcoxon
shapiro.test(Ig$FeNo[Ig$IgG2_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$FeNo[Ig$IgG2_Exces == "Non"]
## W = 0.80675, p-value = 1.999e-11
Student
shapiro.test(Ig$FeNo[Ig$IgG2_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$FeNo[Ig$IgG2_Exces == "Oui"]
## W = 0.90184, p-value = 0.1015
Wilcoxon
shapiro.test(Ig$PNE_G_L[Ig$IgG2_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$PNE_G_L[Ig$IgG2_Exces == "Oui"]
## W = 0.77671, p-value = 1.969e-05
Student
shapiro.test(Ig$PNE_G_L[Ig$IgG2_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$PNE_G_L[Ig$IgG2_Exces == "Non"]
## W = 0.67157, p-value < 2.2e-16
Student
shapiro.test(Ig$IgE_Total[Ig$IgG2_Exces =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$IgE_Total[Ig$IgG2_Exces == "Oui"]
## W = 0.88108, p-value = 0.003555
Student
shapiro.test(Ig$IgE_Total[Ig$IgG2_Exces =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$IgE_Total[Ig$IgG2_Exces == "Non"]
## W = 0.31944, p-value < 2.2e-16
Student
wilcox.test(Ig$age_inclusion~Ig$IgG2_Exces, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$age_inclusion by Ig$IgG2_Exces
## W = 3734.5, p-value = 0.8571
## alternative hypothesis: true location shift is not equal to 0
L’hypothèse nulle d’égalité des moyennes est acceptée car la p-value est > 0.05. Le test ne met pas en évidence une différence significative
t.test(Ig$IMC~Ig$IgG2_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$IMC by Ig$IgG2_Exces
## t = -1.9671, df = 166, p-value = 0.05084
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -6.22953783 0.01148054
## sample estimates:
## mean in group Non mean in group Oui
## 26.16370 29.27273
L’hypothèse nulle d’égalité des moyennes n’est pas rejetée car la p-value est =0.05.
t.test(Ig$Nb_Exa_an.sans_biotherapie~Ig$IgG2_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$Nb_Exa_an.sans_biotherapie by Ig$IgG2_Exces
## t = -0.76459, df = 207, p-value = 0.4454
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4.759652 2.099497
## sample estimates:
## mean in group Non mean in group Oui
## 4.373626 5.703704
Le test ne met pas en évidence une différence significative
t.test(Ig$Corticoïde.systémique..dose.~Ig$IgG2_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$Corticoïde.systémique..dose. by Ig$IgG2_Exces
## t = 0.45784, df = 229, p-value = 0.6475
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.974139 6.380080
## sample estimates:
## mean in group Non mean in group Oui
## 6.20297 5.00000
Le test ne met pas en évidence une différence significative
t.test(Ig$CSI_µg~Ig$IgG2_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$CSI_µg by Ig$IgG2_Exces
## t = -0.82374, df = 245, p-value = 0.4109
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -679.5425 278.7707
## sample estimates:
## mean in group Non mean in group Oui
## 1580.259 1780.645
Le test ne met pas en évidence une différence significative
t.test(Ig$Montélukast~Ig$IgG2_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$Montélukast by Ig$IgG2_Exces
## t = -0.90627, df = 254, p-value = 0.3657
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.25643178 0.09479956
## sample estimates:
## mean in group Non mean in group Oui
## 0.3603604 0.4411765
Le test ne met pas en évidence une différence significative
t.test(Ig$Rep_biotherapie_GETE~Ig$IgG2_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$Rep_biotherapie_GETE by Ig$IgG2_Exces
## t = 0.57574, df = 242, p-value = 0.5653
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.4375048 0.7988755
## sample estimates:
## mean in group Non mean in group Oui
## 1.0140187 0.8333333
Le test ne met pas en évidence une différence significative
wilcox.test(Ig$VEMS_pre_B2_L~Ig$IgG2_Exces, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$VEMS_pre_B2_L by Ig$IgG2_Exces
## W = 2949.5, p-value = 0.4633
## alternative hypothesis: true location shift is not equal to 0
Le test ne met pas en évidence une différence significative
t.test(Ig$VEMS_PreB2_Pct~Ig$IgG2_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$VEMS_PreB2_Pct by Ig$IgG2_Exces
## t = 1.1171, df = 225, p-value = 0.2651
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4.098335 14.826652
## sample estimates:
## mean in group Non mean in group Oui
## 73.78485 68.42069
Le test ne met pas en évidence une différence significative
wilcox.test(Ig$Tiffenau~Ig$IgG2_Exces, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$Tiffenau by Ig$IgG2_Exces
## W = 3030, p-value = 0.3481
## alternative hypothesis: true location shift is not equal to 0
Le test ne met pas en évidence une différence significative
malgre les données insuffisantes, le test de wilcoxon a été fait ( attention à ne pas prendre en consideration)
wilcox.test(Ig$FeNo~Ig$IgG2_Exces, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$FeNo by Ig$IgG2_Exces
## W = 1148.5, p-value = 0.1228
## alternative hypothesis: true location shift is not equal to 0
Le test ne met pas en évidence une différence significative
t.test(Ig$PNE_G_L~Ig$IgG2_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$PNE_G_L by Ig$IgG2_Exces
## t = -0.064516, df = 233, p-value = 0.9486
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1760932 0.1649262
## sample estimates:
## mean in group Non mean in group Oui
## 0.3460294 0.3516129
Le test ne met pas en évidence une différence significative
t.test(Ig$IgE_Total~Ig$IgG2_Exces, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$IgE_Total by Ig$IgG2_Exces
## t = 0.46644, df = 179, p-value = 0.6415
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -312.9386 506.6763
## sample estimates:
## mean in group Non mean in group Oui
## 425.9392 329.0703
la p-value est dans la limite de la significativité
comp_qual <- read.csv("C:/Users/mallah.s/Desktop/StatsTheses/Mauro anthony/comp_qual.csv", sep=";", stringsAsFactors=TRUE)
Pour le test de liaison entre deux variables qualitative: verification de la normalité -> selon la validation de la normalité :test de Chi2 ou test de fisher
le test du χ2 d’indépendance sert à étudier la liaison entre deux caractères qualitatifs XetY, lorsque les conditions ne sont pas remplies, il existe des corrections,dans notre cas je vais utiliser le tests exacts de Fisher
xtabs(~Sexe+IgG2_Exces, data=comp_qual)
## IgG2_Exces
## Sexe Non Oui
## F 134 20
## M 90 14
chisq.test(comp_qual$Sexe,comp_qual$IgG2_Exces)$expected
## comp_qual$IgG2_Exces
## comp_qual$Sexe Non Oui
## F 133.70543 20.29457
## M 90.29457 13.70543
chisq.test(comp_qual$Sexe,comp_qual$IgG2_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$Sexe and comp_qual$IgG2_Exces
## X-squared = 0.012217, df = 1, p-value = 0.912
fisher.test(comp_qual$Sexe,comp_qual$IgG2_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Sexe and comp_qual$IgG2_Exces
## p-value = 1
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.4611336 2.2985722
## sample estimates:
## odds ratio
## 1.042086
les variables Sexe et deficit d’IgG sont independantes
xtabs(~Montélukast+IgG2_Exces, data=comp_qual)
## IgG2_Exces
## Montélukast Non Oui
## Non 142 19
## Oui 80 15
chisq.test(comp_qual$Montélukast,comp_qual$IgG2_Exces)$expected
## comp_qual$IgG2_Exces
## comp_qual$Montélukast Non Oui
## Non 139.61719 21.38281
## Oui 82.38281 12.61719
chisq.test(comp_qual$Montélukast,comp_qual$IgG2_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$Montélukast and comp_qual$IgG2_Exces
## X-squared = 0.82512, df = 1, p-value = 0.3637
fisher.test(comp_qual$Montélukast,comp_qual$IgG2_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Montélukast and comp_qual$IgG2_Exces
## p-value = 0.4461
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.6245264 3.0886282
## sample estimates:
## odds ratio
## 1.399368
xtabs(~Biotherapie+IgG2_Exces, data=comp_qual)
## IgG2_Exces
## Biotherapie Non Oui
## Non 145 23
## Oui 79 11
chisq.test(comp_qual$Biotherapie,comp_qual$IgG2_Exces)$expected
## comp_qual$IgG2_Exces
## comp_qual$Biotherapie Non Oui
## Non 145.86047 22.13953
## Oui 78.13953 11.86047
chisq.test(comp_qual$Biotherapie,comp_qual$IgG2_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$Biotherapie and comp_qual$IgG2_Exces
## X-squared = 0.11042, df = 1, p-value = 0.7397
fisher.test(comp_qual$Biotherapie,comp_qual$IgG2_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Biotherapie and comp_qual$IgG2_Exces
## p-value = 0.8478
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.3664815 1.9921208
## sample estimates:
## odds ratio
## 0.8782306
xtabs(~Biothérapie_type+IgG2_Exces, data=comp_qual)
## IgG2_Exces
## Biothérapie_type Non Oui
## Benralizumab 9 1
## Dupilumab 4 0
## Mepolizumab 44 8
## Omalixumab 22 2
chisq.test(comp_qual$Biothérapie_type,comp_qual$IgG2_Exces)$expected
## Warning in chisq.test(comp_qual$Biothérapie_type, comp_qual$IgG2_Exces): Chi-
## squared approximation may be incorrect
## comp_qual$IgG2_Exces
## comp_qual$Biothérapie_type Non Oui
## Benralizumab 8.777778 1.2222222
## Dupilumab 3.511111 0.4888889
## Mepolizumab 45.644444 6.3555556
## Omalixumab 21.066667 2.9333333
chisq.test(comp_qual$Biothérapie_type,comp_qual$IgG2_Exces, correct=FALSE)
## Warning in chisq.test(comp_qual$Biothérapie_type, comp_qual$IgG2_Exces, : Chi-
## squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Biothérapie_type and comp_qual$IgG2_Exces
## X-squared = 1.426, df = 3, p-value = 0.6994
fisher.test(comp_qual$Biothérapie_type,comp_qual$IgG2_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Biothérapie_type and comp_qual$IgG2_Exces
## p-value = 0.8829
## alternative hypothesis: two.sided
xtabs(~Tabac+IgG2_Exces, data=comp_qual)
## IgG2_Exces
## Tabac Non Oui
## Actif 23 2
## Non 76 15
## Passif 9 1
## Sevré 75 10
chisq.test(comp_qual$Tabac,comp_qual$IgG2_Exces)$expected
## Warning in chisq.test(comp_qual$Tabac, comp_qual$IgG2_Exces): Chi-squared
## approximation may be incorrect
## comp_qual$IgG2_Exces
## comp_qual$Tabac Non Oui
## Actif 21.682464 3.317536
## Non 78.924171 12.075829
## Passif 8.672986 1.327014
## Sevré 73.720379 11.279621
chisq.test(comp_qual$Tabac,comp_qual$IgG2_Exces, correct=FALSE)
## Warning in chisq.test(comp_qual$Tabac, comp_qual$IgG2_Exces, correct = FALSE):
## Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Tabac and comp_qual$IgG2_Exces
## X-squared = 1.68, df = 3, p-value = 0.6414
fisher.test(comp_qual$Tabac,comp_qual$IgG2_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Tabac and comp_qual$IgG2_Exces
## p-value = 0.6901
## alternative hypothesis: two.sided
xtabs(~Atopie+IgG2_Exces, data=comp_qual)
## IgG2_Exces
## Atopie Non Oui
## Non 140 20
## Oui 84 14
chisq.test(comp_qual$Atopie,comp_qual$IgG2_Exces)$expected
## comp_qual$IgG2_Exces
## comp_qual$Atopie Non Oui
## Non 138.91473 21.08527
## Oui 85.08527 12.91473
chisq.test(comp_qual$Atopie,comp_qual$IgG2_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$Atopie and comp_qual$IgG2_Exces
## X-squared = 0.16938, df = 1, p-value = 0.6807
fisher.test(comp_qual$Atopie,comp_qual$IgG2_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Atopie and comp_qual$IgG2_Exces
## p-value = 0.7071
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.5153122 2.5759322
## sample estimates:
## odds ratio
## 1.165954
xtabs(~FeNo_sup_20_ppb+IgG2_Exces, data=comp_qual)
## IgG2_Exces
## FeNo_sup_20_ppb Non Oui
## Non 49 7
## Oui 74 8
chisq.test(comp_qual$FeNo_sup_20_ppb,comp_qual$IgG2_Exces)$expected
## comp_qual$IgG2_Exces
## comp_qual$FeNo_sup_20_ppb Non Oui
## Non 49.91304 6.086957
## Oui 73.08696 8.913043
chisq.test(comp_qual$FeNo_sup_20_ppb,comp_qual$IgG2_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$FeNo_sup_20_ppb and comp_qual$IgG2_Exces
## X-squared = 0.2586, df = 1, p-value = 0.6111
fisher.test(comp_qual$FeNo_sup_20_ppb,comp_qual$IgG2_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$FeNo_sup_20_ppb and comp_qual$IgG2_Exces
## p-value = 0.7815
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.2239362 2.6283393
## sample estimates:
## odds ratio
## 0.7583267
xtabs(~PNN_sup_5+IgG2_Exces, data=comp_qual)
## IgG2_Exces
## PNN_sup_5 Non Oui
## Non 93 13
## Oui 113 17
chisq.test(comp_qual$PNN_sup_5,comp_qual$IgG2_Exces)$expected
## comp_qual$IgG2_Exces
## comp_qual$PNN_sup_5 Non Oui
## Non 92.52542 13.47458
## Oui 113.47458 16.52542
chisq.test(comp_qual$PNN_sup_5,comp_qual$IgG2_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$PNN_sup_5 and comp_qual$IgG2_Exces
## X-squared = 0.034762, df = 1, p-value = 0.8521
fisher.test(comp_qual$PNN_sup_5,comp_qual$IgG2_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$PNN_sup_5 and comp_qual$IgG2_Exces
## p-value = 1
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.4646368 2.5443837
## sample estimates:
## odds ratio
## 1.075939
Les deux variable sont independantes
xtabs(~PNE_sup_0.15G_L+IgG2_Exces, data=comp_qual)
## IgG2_Exces
## PNE_sup_0.15G_L Non Oui
## Non 82 16
## Oui 122 15
chisq.test(comp_qual$PNE_sup_0.15G_L,comp_qual$IgG2_Exces)$expected
## comp_qual$IgG2_Exces
## comp_qual$PNE_sup_0.15G_L Non Oui
## Non 85.07234 12.92766
## Oui 118.92766 18.07234
chisq.test(comp_qual$PNE_sup_0.15G_L,comp_qual$IgG2_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$PNE_sup_0.15G_L and comp_qual$IgG2_Exces
## X-squared = 1.4428, df = 1, p-value = 0.2297
fisher.test(comp_qual$PNE_sup_0.15G_L,comp_qual$IgG2_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$PNE_sup_0.15G_L and comp_qual$IgG2_Exces
## p-value = 0.246
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.2739374 1.4473962
## sample estimates:
## odds ratio
## 0.6314104
xtabs(~PNE_sup_0.3.G_L+IgG2_Exces, data=comp_qual)
## IgG2_Exces
## PNE_sup_0.3.G_L Non Oui
## Non 116 17
## Oui 88 14
chisq.test(comp_qual$PNE_sup_0.3.G_L,comp_qual$IgG2_Exces)$expected
## comp_qual$IgG2_Exces
## comp_qual$PNE_sup_0.3.G_L Non Oui
## Non 115.45532 17.54468
## Oui 88.54468 13.45532
chisq.test(comp_qual$PNE_sup_0.3.G_L,comp_qual$IgG2_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$PNE_sup_0.3.G_L and comp_qual$IgG2_Exces
## X-squared = 0.044879, df = 1, p-value = 0.8322
fisher.test(comp_qual$PNE_sup_0.3.G_L,comp_qual$IgG2_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$PNE_sup_0.3.G_L and comp_qual$IgG2_Exces
## p-value = 0.848
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.4676988 2.4821256
## sample estimates:
## odds ratio
## 1.08518
xtabs(~CRP_sup_5.mg_l+IgG2_Exces, data=comp_qual)
## IgG2_Exces
## CRP_sup_5.mg_l Non Oui
## Non 94 12
## Oui 41 8
chisq.test(comp_qual$CRP_sup_5.mg_l,comp_qual$IgG2_Exces)$expected
## comp_qual$IgG2_Exces
## comp_qual$CRP_sup_5.mg_l Non Oui
## Non 92.32258 13.677419
## Oui 42.67742 6.322581
chisq.test(comp_qual$CRP_sup_5.mg_l,comp_qual$IgG2_Exces, correct=FALSE)
##
## Pearson's Chi-squared test
##
## data: comp_qual$CRP_sup_5.mg_l and comp_qual$IgG2_Exces
## X-squared = 0.74716, df = 1, p-value = 0.3874
fisher.test(comp_qual$CRP_sup_5.mg_l,comp_qual$IgG2_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$CRP_sup_5.mg_l and comp_qual$IgG2_Exces
## p-value = 0.4421
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.5003833 4.4157556
## sample estimates:
## odds ratio
## 1.52407
xtabs(~IgE_Total_sup_30_kUA_l+IgG2_Exces, data=comp_qual)
## IgG2_Exces
## IgE_Total_sup_30_kUA_l Non Oui
## Non 26 4
## Oui 126 25
chisq.test(comp_qual$IgE_Total_sup_30_kUA_l,comp_qual$IgG2_Exces)$expected
## Warning in chisq.test(comp_qual$IgE_Total_sup_30_kUA_l, comp_qual$IgG2_Exces):
## Chi-squared approximation may be incorrect
## comp_qual$IgG2_Exces
## Non Oui
## Non 25.19337 4.80663
## Oui 126.80663 24.19337
chisq.test(comp_qual$IgE_Total_sup_30_kUA_l,comp_qual$IgG2_Exces, correct=FALSE)
## Warning in chisq.test(comp_qual$IgE_Total_sup_30_kUA_l, comp_qual$IgG2_Exces, :
## Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$IgE_Total_sup_30_kUA_l and comp_qual$IgG2_Exces
## X-squared = 0.19322, df = 1, p-value = 0.6603
fisher.test(comp_qual$IgE_Total_sup_30_kUA_l,comp_qual$IgG2_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$IgE_Total_sup_30_kUA_l and comp_qual$IgG2_Exces
## p-value = 0.7903
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.3952148 5.5194562
## sample estimates:
## odds ratio
## 1.287956
xtabs(~Profil_T2+IgG2_Exces, data=comp_qual)
## IgG2_Exces
## Profil_T2 Non Oui
## Neg 73 12
## Pos 43 2
chisq.test(comp_qual$Profil_T2,comp_qual$IgG2_Exces)$expected
## Warning in chisq.test(comp_qual$Profil_T2, comp_qual$IgG2_Exces): Chi-squared
## approximation may be incorrect
## comp_qual$IgG2_Exces
## comp_qual$Profil_T2 Non Oui
## Neg 75.84615 9.153846
## Pos 40.15385 4.846154
chisq.test(comp_qual$Profil_T2,comp_qual$IgG2_Exces, correct=FALSE)
## Warning in chisq.test(comp_qual$Profil_T2, comp_qual$IgG2_Exces, correct =
## FALSE): Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Profil_T2 and comp_qual$IgG2_Exces
## X-squared = 2.865, df = 1, p-value = 0.09052
fisher.test(comp_qual$Profil_T2,comp_qual$IgG2_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Profil_T2 and comp_qual$IgG2_Exces
## p-value = 0.1364
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.02964217 1.37410003
## sample estimates:
## odds ratio
## 0.2851939
xtabs(~Rep_biotherapie_GETE+IgG2_Exces, data=comp_qual)
## IgG2_Exces
## Rep_biotherapie_GETE Non Oui
## 155 26
## Aggravation 8 1
## Bonne 25 0
## Excellent 3 2
## Faible 25 3
## modérée 8 2
chisq.test(comp_qual$Rep_biotherapie_GETE,comp_qual$IgG2_Exces)$expected
## Warning in chisq.test(comp_qual$Rep_biotherapie_GETE, comp_qual$IgG2_Exces):
## Chi-squared approximation may be incorrect
## comp_qual$IgG2_Exces
## comp_qual$Rep_biotherapie_GETE Non Oui
## 157.147287 23.8527132
## Aggravation 7.813953 1.1860465
## Bonne 21.705426 3.2945736
## Excellent 4.341085 0.6589147
## Faible 24.310078 3.6899225
## modérée 8.682171 1.3178295
chisq.test(comp_qual$Rep_biotherapie_GETE,comp_qual$IgG2_Exces, correct=FALSE)
## Warning in chisq.test(comp_qual$Rep_biotherapie_GETE, comp_qual$IgG2_Exces, :
## Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Rep_biotherapie_GETE and comp_qual$IgG2_Exces
## X-squared = 7.75, df = 5, p-value = 0.1706
fisher.test(comp_qual$Rep_biotherapie_GETE,comp_qual$IgG2_Exces)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Rep_biotherapie_GETE and comp_qual$IgG2_Exces
## p-value = 0.09327
## alternative hypothesis: two.sided