la normalité va nous permettre de choisir le type de test pour comparer les données Un test de shapiro pour valider la normalité si la p-value est<0.05 la normalité n’est pas accepté on fait donc un test de Wilcoxon Si la normalité est respecté on fait le test de Student
shapiro.test(Ig$age_inclusion[Ig$IgG2_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$age_inclusion[Ig$IgG2_deficit == "Oui"]
## W = 0.89563, p-value = 0.2637
la normalité n’est pas acceptée: test de Wilcoxon
shapiro.test(Ig$age_inclusion[Ig$IgG2_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$age_inclusion[Ig$IgG2_deficit == "Non"]
## W = 0.98076, p-value = 0.001823
shapiro.test(Ig$IMC[Ig$IgG2_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$IMC[Ig$IgG2_deficit == "Oui"]
## W = 0.98785, p-value = 0.9462
la normalité n’est pas acceptée: test de Wilcoxon
shapiro.test(Ig$IMC[Ig$IgG2_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$IMC[Ig$IgG2_deficit == "Non"]
## W = 0.85351, p-value = 1.639e-11
la normalité n’est pas acceptés :test de student
shapiro.test(Ig$Nb_Exa_an.sans_biotherapie[Ig$IgG2_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Nb_Exa_an.sans_biotherapie[Ig$IgG2_deficit == "Oui"]
## W = 0.76879, p-value = 0.01986
shapiro.test(Ig$Nb_Exa_an.sans_biotherapie[Ig$IgG2_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Nb_Exa_an.sans_biotherapie[Ig$IgG2_deficit == "Non"]
## W = 0.41157, p-value < 2.2e-16
la normalité est accepté: test de student
shapiro.test(Ig$Corticoïde.systémique..dose.[Ig$IgG2_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Corticoïde.systémique..dose.[Ig$IgG2_deficit == "Oui"]
## W = 0.76928, p-value = 0.02009
shapiro.test(Ig$Corticoïde.systémique..dose.[Ig$IgG2_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Corticoïde.systémique..dose.[Ig$IgG2_deficit == "Non"]
## W = 0.51988, p-value < 2.2e-16
la normalité n’est pas acceptés :test de student
shapiro.test(Ig$CSI_µg[Ig$IgG2_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$CSI_µg[Ig$IgG2_deficit == "Oui"]
## W = 0.90959, p-value = 0.3512
shapiro.test(Ig$CSI_µg[Ig$IgG2_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$CSI_µg[Ig$IgG2_deficit == "Non"]
## W = 0.87299, p-value = 3.225e-13
la normalité est acceptée : Test de Student
shapiro.test(Ig$Montélukast[Ig$IgG2_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Montélukast[Ig$IgG2_deficit == "Oui"]
## W = 0.6412, p-value = 0.0004791
shapiro.test(Ig$Montélukast[Ig$IgG2_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Montélukast[Ig$IgG2_deficit == "Non"]
## W = 0.61178, p-value < 2.2e-16
la normalité est acceptés :test de Student
shapiro.test(Ig$Rep_biotherapie_GETE[Ig$IgG2_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Rep_biotherapie_GETE[Ig$IgG2_deficit == "Oui"]
## W = 0.7023, p-value = 0.002391
la normalité est acceptée : t-test de Student
shapiro.test(Ig$Rep_biotherapie_GETE[Ig$IgG2_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Rep_biotherapie_GETE[Ig$IgG2_deficit == "Non"]
## W = 0.64379, p-value < 2.2e-16
la normalité est acceptée : t-test de Student
shapiro.test(Ig$VEMS_pre_B2_L[Ig$IgG2_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$VEMS_pre_B2_L[Ig$IgG2_deficit == "Oui"]
## W = 0.93655, p-value = 0.6079
la normalité n’est pas acceptée : Test de Wilcoxon
shapiro.test(Ig$VEMS_pre_B2_L[Ig$IgG2_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$VEMS_pre_B2_L[Ig$IgG2_deficit == "Non"]
## W = 0.97459, p-value = 0.0006348
la normalité est accepté :test de Student
shapiro.test(Ig$VEMS_PreB2_Pct[Ig$IgG2_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$VEMS_PreB2_Pct[Ig$IgG2_deficit == "Oui"]
## W = 0.88913, p-value = 0.2702
la normalité n’est pas acceptée : test de Wilcoxon
shapiro.test(Ig$VEMS_PreB2_Pct[Ig$IgG2_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$VEMS_PreB2_Pct[Ig$IgG2_deficit == "Non"]
## W = 0.98011, p-value = 0.003396
la normalité est acceptée : test de student
shapiro.test(Ig$Tiffenau[Ig$IgG2_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Tiffenau[Ig$IgG2_deficit == "Oui"]
## W = 0.90882, p-value = 0.3878
la normalité n’est pas acceptée : T de Wilcoxon
shapiro.test(Ig$Tiffenau[Ig$IgG2_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$Tiffenau[Ig$IgG2_deficit == "Non"]
## W = 0.98796, p-value = 0.06577
la normalité n’est pas acceptée : T de Wilcoxon
nous ne nouvons pas calculer la difference entre ceux qui sont en deficit d’IgG et les autres par manque de données. Seul 2 patients avec deficit d’IGG ont une donnée de FeNO
shapiro.test(Ig$FeNo[Ig$IgG2_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$FeNo[Ig$IgG2_deficit == "Non"]
## W = 0.78759, p-value = 1.181e-12
la normalité est acceptée : test de student
shapiro.test(Ig$FeNo[Ig$IgG2_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$FeNo[Ig$IgG2_deficit == "Oui"]
## W = 0.95439, p-value = 0.7436
test de Wilcoxon
shapiro.test(Ig$PNE_G_L[Ig$IgG2_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$PNE_G_L[Ig$IgG2_deficit == "Oui"]
## W = 0.82162, p-value = 0.09114
la normalité n’est pas acceptée : t-test de Wilcoxon
shapiro.test(Ig$PNE_G_L[Ig$IgG2_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$PNE_G_L[Ig$IgG2_deficit == "Non"]
## W = 0.69081, p-value < 2.2e-16
la normalité est accéptée : student
shapiro.test(Ig$IgE_Total[Ig$IgG2_deficit =="Oui"])
##
## Shapiro-Wilk normality test
##
## data: Ig$IgE_Total[Ig$IgG2_deficit == "Oui"]
## W = 0.84861, p-value = 0.2217
la normalité n’est pas acceptée : t-test de Wilcoxon
shapiro.test(Ig$IgE_Total[Ig$IgG2_deficit =="Non"])
##
## Shapiro-Wilk normality test
##
## data: Ig$IgE_Total[Ig$IgG2_deficit == "Non"]
## W = 0.32211, p-value < 2.2e-16
T-test de Student
wilcox.test(Ig$age_inclusion~Ig$IgG2_deficit, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$age_inclusion by Ig$IgG2_deficit
## W = 763.5, p-value = 0.256
## alternative hypothesis: true location shift is not equal to 0
L’hypothèse nulle d’égalité des moyennes est rejetée car la p-value est > 0.05. Le test ne met pas en évidence une différence significative entre l’age des patients ayant l’IgG2 de deficit et les autres
wilcox.test(Ig$age_inclusion~Ig$IgG2_deficit, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$age_inclusion by Ig$IgG2_deficit
## W = 763.5, p-value = 0.256
## alternative hypothesis: true location shift is not equal to 0
même conclusion
t.test(Ig$IMC~Ig$IgG2_deficit, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$IMC by Ig$IgG2_deficit
## t = 0.23771, df = 166, p-value = 0.8124
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -6.142934 7.824641
## sample estimates:
## mean in group Non mean in group Oui
## 26.59085 25.75000
L’hypothèse nulle d’égalité des moyennes n’est pas rejetée car la p-value est > 0.05. Ainsi, rien ne permet d’affirmer que les moyennes des IMC des patients ayant l’IgG2 en deficit et les autres patients sont différentes.
wilcox.test(Ig$IMC~Ig$IgG2_deficit, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$IMC by Ig$IgG2_deficit
## W = 350, p-value = 0.8227
## alternative hypothesis: true location shift is not equal to 0
même conclusion
t.test(Ig$Nb_Exa_an.sans_biotherapie~Ig$IgG2_deficit, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$Nb_Exa_an.sans_biotherapie by Ig$IgG2_deficit
## t = 0.40151, df = 207, p-value = 0.6885
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -5.096554 7.703343
## sample estimates:
## mean in group Non mean in group Oui
## 4.589109 3.285714
Le test ne met pas en évidence une différence significative
t.test(Ig$Corticoïde.systémique..dose.~Ig$IgG2_deficit, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$Corticoïde.systémique..dose. by Ig$IgG2_deficit
## t = 0.068535, df = 229, p-value = 0.9454
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -9.662919 10.359348
## sample estimates:
## mean in group Non mean in group Oui
## 6.062500 5.714286
Le test ne met pas en évidence une différence significative
t.test(Ig$CSI_µg~Ig$IgG2_deficit, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$CSI_µg by Ig$IgG2_deficit
## t = 0.30987, df = 245, p-value = 0.7569
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -756.5196 1038.9861
## sample estimates:
## mean in group Non mean in group Oui
## 1609.983 1468.750
Le test ne met pas en évidence une différence significative
t.test(Ig$Montélukast~Ig$IgG2_deficit, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$Montélukast by Ig$IgG2_deficit
## t = -0.023145, df = 254, p-value = 0.9816
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.3471230 0.3390584
## sample estimates:
## mean in group Non mean in group Oui
## 0.3709677 0.3750000
Le test ne met pas en évidence une différence significative
t.test(Ig$Rep_biotherapie_GETE~Ig$IgG2_deficit, var.equal=TRUE)
##
## Two Sample t-test
##
## data: Ig$Rep_biotherapie_GETE by Ig$IgG2_deficit
## t = -0.23783, df = 242, p-value = 0.8122
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.278316 1.002893
## sample estimates:
## mean in group Non mean in group Oui
## 0.9872881 1.1250000
Le test ne met pas en évidence une différence significative
wilcox.test(Ig$VEMS_pre_B2_L~Ig$IgG2_deficit, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$VEMS_pre_B2_L by Ig$IgG2_deficit
## W = 773.5, p-value = 0.9024
## alternative hypothesis: true location shift is not equal to 0
Le test ne met pas en évidence une différence significative
wilcox.test(Ig$VEMS_PreB2_Pct~Ig$IgG2_deficit, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$VEMS_PreB2_Pct by Ig$IgG2_deficit
## W = 662, p-value = 0.5297
## alternative hypothesis: true location shift is not equal to 0
Le test ne met pas en évidence une différence significative
wilcox.test(Ig$Tiffenau~Ig$IgG2_deficit, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$Tiffenau by Ig$IgG2_deficit
## W = 811.5, p-value = 0.7434
## alternative hypothesis: true location shift is not equal to 0
Le test ne met pas en évidence une différence significative
malgre les données insuffisantes, le test de wilcoxon a été fait ( attention à ne pas prendre en consideration)
wilcox.test(Ig$FeNo~Ig$IgG2_deficit, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$FeNo by Ig$IgG2_deficit
## W = 200.5, p-value = 0.395
## alternative hypothesis: true location shift is not equal to 0
Le test ne met pas en évidence une différence significative
wilcox.test(Ig$PNE_G_L~Ig$IgG2_deficit, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$PNE_G_L by Ig$IgG2_deficit
## W = 1073, p-value = 0.01757
## alternative hypothesis: true location shift is not equal to 0
Le test met en évidence une différence significative
wilcox.test(Ig$IgE_Total~Ig$IgG2_deficit, var.equal=TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Ig$IgE_Total by Ig$IgG2_deficit
## W = 394.5, p-value = 0.6995
## alternative hypothesis: true location shift is not equal to 0
Le test ne met pas en évidence une différence significative
comp_qual <- read.csv("C:/Users/mallah.s/Desktop/StatsTheses/Mauro anthony/comp_qual.csv", sep=";", stringsAsFactors=TRUE)
Pour le test de liaison entre deux variables qualitative: verification de la normalité -> selon la validation de la normalité :test de Chi2 ou test de fisher
le test du χ2 d’indépendance sert à étudier la liaison entre deux caractères qualitatifs XetY, lorsque les conditions ne sont pas remplies, il existe des corrections,dans notre cas je vais utiliser le tests exacts de Fisher
xtabs(~Sexe+IgG2_deficit, data=comp_qual)
## IgG2_deficit
## Sexe Non Oui
## F 148 6
## M 102 2
chisq.test(comp_qual$Sexe,comp_qual$IgG2_deficit)$expected
## Warning in chisq.test(comp_qual$Sexe, comp_qual$IgG2_deficit): Chi-squared
## approximation may be incorrect
## comp_qual$IgG2_deficit
## comp_qual$Sexe Non Oui
## F 149.2248 4.775194
## M 100.7752 3.224806
chisq.test(comp_qual$Sexe,comp_qual$IgG2_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$Sexe, comp_qual$IgG2_deficit, correct = FALSE):
## Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Sexe and comp_qual$IgG2_deficit
## X-squared = 0.80428, df = 1, p-value = 0.3698
fisher.test(comp_qual$Sexe,comp_qual$IgG2_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Sexe and comp_qual$IgG2_deficit
## p-value = 0.4804
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.04697675 2.78103300
## sample estimates:
## odds ratio
## 0.4848991
les variables Sexe et deficit d’IgG 2 sont independantes
xtabs(~Montélukast+IgG2_deficit, data=comp_qual)
## IgG2_deficit
## Montélukast Non Oui
## Non 156 5
## Oui 92 3
chisq.test(comp_qual$Montélukast,comp_qual$IgG2_deficit)$expected
## Warning in chisq.test(comp_qual$Montélukast, comp_qual$IgG2_deficit): Chi-
## squared approximation may be incorrect
## comp_qual$IgG2_deficit
## comp_qual$Montélukast Non Oui
## Non 155.96875 5.03125
## Oui 92.03125 2.96875
chisq.test(comp_qual$Montélukast,comp_qual$IgG2_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$Montélukast, comp_qual$IgG2_deficit, correct =
## FALSE): Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Montélukast and comp_qual$IgG2_deficit
## X-squared = 0.00053992, df = 1, p-value = 0.9815
fisher.test(comp_qual$Montélukast,comp_qual$IgG2_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Montélukast and comp_qual$IgG2_deficit
## p-value = 1
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.1544207 5.3672921
## sample estimates:
## odds ratio
## 1.01733
Pour les IgG2 en deficit, il y’a seulement 3 qui sont traités par Montélukast, donc pas assez de patients, ce qui explique le le resultats de la p-value du test exact de fisher
xtabs(~Biotherapie+IgG2_deficit, data=comp_qual)
## IgG2_deficit
## Biotherapie Non Oui
## Non 163 5
## Oui 87 3
chisq.test(comp_qual$Biotherapie,comp_qual$IgG2_deficit)$expected
## Warning in chisq.test(comp_qual$Biotherapie, comp_qual$IgG2_deficit): Chi-
## squared approximation may be incorrect
## comp_qual$IgG2_deficit
## comp_qual$Biotherapie Non Oui
## Non 162.7907 5.209302
## Oui 87.2093 2.790698
chisq.test(comp_qual$Biotherapie,comp_qual$IgG2_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$Biotherapie, comp_qual$IgG2_deficit, correct =
## FALSE): Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Biotherapie and comp_qual$IgG2_deficit
## X-squared = 0.024879, df = 1, p-value = 0.8747
fisher.test(comp_qual$Biotherapie,comp_qual$IgG2_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Biotherapie and comp_qual$IgG2_deficit
## p-value = 1
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.1704848 5.9316747
## sample estimates:
## odds ratio
## 1.123615
Pour les IgG2 en deficit, il y’a seulement 3 qui sont traités par Biotherapie, donc pas assez de patients, ce qui explique le le resultats de la p-value du test exact de fisher
xtabs(~Biothérapie_type+IgG2_deficit, data=comp_qual)
## IgG2_deficit
## Biothérapie_type Non Oui
## Benralizumab 10 0
## Dupilumab 4 0
## Mepolizumab 50 2
## Omalixumab 23 1
chisq.test(comp_qual$Biothérapie_type,comp_qual$IgG2_deficit)$expected
## Warning in chisq.test(comp_qual$Biothérapie_type, comp_qual$IgG2_deficit): Chi-
## squared approximation may be incorrect
## comp_qual$IgG2_deficit
## comp_qual$Biothérapie_type Non Oui
## Benralizumab 9.666667 0.3333333
## Dupilumab 3.866667 0.1333333
## Mepolizumab 50.266667 1.7333333
## Omalixumab 23.200000 0.8000000
chisq.test(comp_qual$Biothérapie_type,comp_qual$IgG2_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$Biothérapie_type, comp_qual$IgG2_deficit, : Chi-
## squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Biothérapie_type and comp_qual$IgG2_deficit
## X-squared = 0.57692, df = 3, p-value = 0.9017
fisher.test(comp_qual$Biothérapie_type,comp_qual$IgG2_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Biothérapie_type and comp_qual$IgG2_deficit
## p-value = 1
## alternative hypothesis: two.sided
même resultats que pour les biotherapie
xtabs(~Tabac+IgG2_deficit, data=comp_qual)
## IgG2_deficit
## Tabac Non Oui
## Actif 23 2
## Non 89 2
## Passif 9 1
## Sevré 82 3
chisq.test(comp_qual$Tabac,comp_qual$IgG2_deficit)$expected
## Warning in chisq.test(comp_qual$Tabac, comp_qual$IgG2_deficit): Chi-squared
## approximation may be incorrect
## comp_qual$IgG2_deficit
## comp_qual$Tabac Non Oui
## Actif 24.052133 0.9478673
## Non 87.549763 3.4502370
## Passif 9.620853 0.3791469
## Sevré 81.777251 3.2227488
chisq.test(comp_qual$Tabac,comp_qual$IgG2_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$Tabac, comp_qual$IgG2_deficit, correct = FALSE):
## Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Tabac and comp_qual$IgG2_deficit
## X-squared = 2.9202, df = 3, p-value = 0.4041
fisher.test(comp_qual$Tabac,comp_qual$IgG2_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Tabac and comp_qual$IgG2_deficit
## p-value = 0.2295
## alternative hypothesis: two.sided
xtabs(~Atopie+IgG2_deficit, data=comp_qual)
## IgG2_deficit
## Atopie Non Oui
## Non 153 7
## Oui 97 1
chisq.test(comp_qual$Atopie,comp_qual$IgG2_deficit)$expected
## Warning in chisq.test(comp_qual$Atopie, comp_qual$IgG2_deficit): Chi-squared
## approximation may be incorrect
## comp_qual$IgG2_deficit
## comp_qual$Atopie Non Oui
## Non 155.03876 4.96124
## Oui 94.96124 3.03876
chisq.test(comp_qual$Atopie,comp_qual$IgG2_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$Atopie, comp_qual$IgG2_deficit, correct =
## FALSE): Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Atopie and comp_qual$IgG2_deficit
## X-squared = 2.2762, df = 1, p-value = 0.1314
fisher.test(comp_qual$Atopie,comp_qual$IgG2_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Atopie and comp_qual$IgG2_deficit
## p-value = 0.2655
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.004953882 1.805617308
## sample estimates:
## odds ratio
## 0.2263166
Il n y’a pas de correlation significative entre l’atopie et les IgG2 en deficit
xtabs(~FeNo_sup_20_ppb+IgG2_deficit, data=comp_qual)
## IgG2_deficit
## FeNo_sup_20_ppb Non Oui
## Non 55 1
## Oui 79 3
chisq.test(comp_qual$FeNo_sup_20_ppb,comp_qual$IgG2_deficit)$expected
## Warning in chisq.test(comp_qual$FeNo_sup_20_ppb, comp_qual$IgG2_deficit): Chi-
## squared approximation may be incorrect
## comp_qual$IgG2_deficit
## comp_qual$FeNo_sup_20_ppb Non Oui
## Non 54.37681 1.623188
## Oui 79.62319 2.376812
chisq.test(comp_qual$FeNo_sup_20_ppb,comp_qual$IgG2_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$FeNo_sup_20_ppb, comp_qual$IgG2_deficit, : Chi-
## squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$FeNo_sup_20_ppb and comp_qual$IgG2_deficit
## X-squared = 0.41468, df = 1, p-value = 0.5196
fisher.test(comp_qual$FeNo_sup_20_ppb,comp_qual$IgG2_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$FeNo_sup_20_ppb and comp_qual$IgG2_deficit
## p-value = 0.6464
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.1620354 111.5456197
## sample estimates:
## odds ratio
## 2.078528
il n’y a clairement pas assez de patients pour pouvoir affirmer ou refuter une relation de dependance ou independance des données
xtabs(~PNN_sup_5+IgG2_deficit, data=comp_qual)
## IgG2_deficit
## PNN_sup_5 Non Oui
## Non 105 1
## Oui 125 5
chisq.test(comp_qual$PNN_sup_5,comp_qual$IgG2_deficit)$expected
## Warning in chisq.test(comp_qual$PNN_sup_5, comp_qual$IgG2_deficit): Chi-squared
## approximation may be incorrect
## comp_qual$IgG2_deficit
## comp_qual$PNN_sup_5 Non Oui
## Non 103.3051 2.694915
## Oui 126.6949 3.305085
chisq.test(comp_qual$PNN_sup_5,comp_qual$IgG2_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$PNN_sup_5, comp_qual$IgG2_deficit, correct =
## FALSE): Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$PNN_sup_5 and comp_qual$IgG2_deficit
## X-squared = 1.9857, df = 1, p-value = 0.1588
fisher.test(comp_qual$PNN_sup_5,comp_qual$IgG2_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$PNN_sup_5 and comp_qual$IgG2_deficit
## p-value = 0.2274
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.4573631 200.3188242
## sample estimates:
## odds ratio
## 4.178951
Les deux variable sont independantes
xtabs(~PNE_sup_0.15G_L+IgG2_deficit, data=comp_qual)
## IgG2_deficit
## PNE_sup_0.15G_L Non Oui
## Non 93 5
## Oui 136 1
chisq.test(comp_qual$PNE_sup_0.15G_L,comp_qual$IgG2_deficit)$expected
## Warning in chisq.test(comp_qual$PNE_sup_0.15G_L, comp_qual$IgG2_deficit): Chi-
## squared approximation may be incorrect
## comp_qual$IgG2_deficit
## comp_qual$PNE_sup_0.15G_L Non Oui
## Non 95.49787 2.502128
## Oui 133.50213 3.497872
chisq.test(comp_qual$PNE_sup_0.15G_L,comp_qual$IgG2_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$PNE_sup_0.15G_L, comp_qual$IgG2_deficit, : Chi-
## squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$PNE_sup_0.15G_L and comp_qual$IgG2_deficit
## X-squared = 4.3895, df = 1, p-value = 0.03616
fisher.test(comp_qual$PNE_sup_0.15G_L,comp_qual$IgG2_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$PNE_sup_0.15G_L and comp_qual$IgG2_deficit
## p-value = 0.08468
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.002876064 1.259896153
## sample estimates:
## odds ratio
## 0.1378348
xtabs(~PNE_sup_0.3.G_L+IgG2_deficit, data=comp_qual)
## IgG2_deficit
## PNE_sup_0.3.G_L Non Oui
## Non 127 6
## Oui 102 0
chisq.test(comp_qual$PNE_sup_0.3.G_L,comp_qual$IgG2_deficit)$expected
## Warning in chisq.test(comp_qual$PNE_sup_0.3.G_L, comp_qual$IgG2_deficit): Chi-
## squared approximation may be incorrect
## comp_qual$IgG2_deficit
## comp_qual$PNE_sup_0.3.G_L Non Oui
## Non 129.60426 3.395745
## Oui 99.39574 2.604255
chisq.test(comp_qual$PNE_sup_0.3.G_L,comp_qual$IgG2_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$PNE_sup_0.3.G_L, comp_qual$IgG2_deficit, : Chi-
## squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$PNE_sup_0.3.G_L and comp_qual$IgG2_deficit
## X-squared = 4.7221, df = 1, p-value = 0.02978
fisher.test(comp_qual$PNE_sup_0.3.G_L,comp_qual$IgG2_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$PNE_sup_0.3.G_L and comp_qual$IgG2_deficit
## p-value = 0.0374
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.000000 1.087454
## sample estimates:
## odds ratio
## 0
xtabs(~CRP_sup_5.mg_l+IgG2_deficit, data=comp_qual)
## IgG2_deficit
## CRP_sup_5.mg_l Non Oui
## Non 103 3
## Oui 48 1
chisq.test(comp_qual$CRP_sup_5.mg_l,comp_qual$IgG2_deficit)$expected
## Warning in chisq.test(comp_qual$CRP_sup_5.mg_l, comp_qual$IgG2_deficit): Chi-
## squared approximation may be incorrect
## comp_qual$IgG2_deficit
## comp_qual$CRP_sup_5.mg_l Non Oui
## Non 103.26452 2.735484
## Oui 47.73548 1.264516
chisq.test(comp_qual$CRP_sup_5.mg_l,comp_qual$IgG2_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$CRP_sup_5.mg_l, comp_qual$IgG2_deficit, : Chi-
## squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$CRP_sup_5.mg_l and comp_qual$IgG2_deficit
## X-squared = 0.083054, df = 1, p-value = 0.7732
fisher.test(comp_qual$CRP_sup_5.mg_l,comp_qual$IgG2_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$CRP_sup_5.mg_l and comp_qual$IgG2_deficit
## p-value = 1
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.01335548 9.19259308
## sample estimates:
## odds ratio
## 0.7167176
xtabs(~IgE_Total_sup_30_kUA_l+IgG2_deficit, data=comp_qual)
## IgG2_deficit
## IgE_Total_sup_30_kUA_l Non Oui
## Non 29 1
## Oui 148 3
chisq.test(comp_qual$IgE_Total_sup_30_kUA_l,comp_qual$IgG2_deficit)$expected
## Warning in chisq.test(comp_qual$IgE_Total_sup_30_kUA_l, comp_qual$IgG2_deficit):
## Chi-squared approximation may be incorrect
## comp_qual$IgG2_deficit
## Non Oui
## Non 29.33702 0.6629834
## Oui 147.66298 3.3370166
chisq.test(comp_qual$IgE_Total_sup_30_kUA_l,comp_qual$IgG2_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$IgE_Total_sup_30_kUA_l,
## comp_qual$IgG2_deficit, : Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$IgE_Total_sup_30_kUA_l and comp_qual$IgG2_deficit
## X-squared = 0.20999, df = 1, p-value = 0.6468
fisher.test(comp_qual$IgE_Total_sup_30_kUA_l,comp_qual$IgG2_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$IgE_Total_sup_30_kUA_l and comp_qual$IgG2_deficit
## p-value = 0.5188
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.0455098 31.9120864
## sample estimates:
## odds ratio
## 0.5898704
xtabs(~Profil_T2+IgG2_deficit, data=comp_qual)
## IgG2_deficit
## Profil_T2 Non Oui
## Neg 83 2
## Pos 44 1
chisq.test(comp_qual$Profil_T2,comp_qual$IgG2_deficit)$expected
## Warning in chisq.test(comp_qual$Profil_T2, comp_qual$IgG2_deficit): Chi-squared
## approximation may be incorrect
## comp_qual$IgG2_deficit
## comp_qual$Profil_T2 Non Oui
## Neg 83.03846 1.961538
## Pos 43.96154 1.038462
chisq.test(comp_qual$Profil_T2,comp_qual$IgG2_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$Profil_T2, comp_qual$IgG2_deficit, correct =
## FALSE): Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Profil_T2 and comp_qual$IgG2_deficit
## X-squared = 0.0022301, df = 1, p-value = 0.9623
fisher.test(comp_qual$Profil_T2,comp_qual$IgG2_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Profil_T2 and comp_qual$IgG2_deficit
## p-value = 1
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.01564158 18.60629071
## sample estimates:
## odds ratio
## 0.9435989
il n’ya clairement pas assez de patients pour que la significativité puisse etre validée ou refutée
xtabs(~Rep_biotherapie_GETE+IgG2_deficit, data=comp_qual)
## IgG2_deficit
## Rep_biotherapie_GETE Non Oui
## 176 5
## Aggravation 8 1
## Bonne 23 2
## Excellent 5 0
## Faible 28 0
## modérée 10 0
chisq.test(comp_qual$Rep_biotherapie_GETE,comp_qual$IgG2_deficit)$expected
## Warning in chisq.test(comp_qual$Rep_biotherapie_GETE, comp_qual$IgG2_deficit):
## Chi-squared approximation may be incorrect
## comp_qual$IgG2_deficit
## comp_qual$Rep_biotherapie_GETE Non Oui
## 175.387597 5.6124031
## Aggravation 8.720930 0.2790698
## Bonne 24.224806 0.7751938
## Excellent 4.844961 0.1550388
## Faible 27.131783 0.8682171
## modérée 9.689922 0.3100775
chisq.test(comp_qual$Rep_biotherapie_GETE,comp_qual$IgG2_deficit, correct=FALSE)
## Warning in chisq.test(comp_qual$Rep_biotherapie_GETE, comp_qual$IgG2_deficit, :
## Chi-squared approximation may be incorrect
##
## Pearson's Chi-squared test
##
## data: comp_qual$Rep_biotherapie_GETE and comp_qual$IgG2_deficit
## X-squared = 5.3641, df = 5, p-value = 0.3731
fisher.test(comp_qual$Rep_biotherapie_GETE,comp_qual$IgG2_deficit)
##
## Fisher's Exact Test for Count Data
##
## data: comp_qual$Rep_biotherapie_GETE and comp_qual$IgG2_deficit
## p-value = 0.2931
## alternative hypothesis: two.sided