Email             :
RPubs            : https://rpubs.com/naftalibrigitta/
Jurusan          : Statistika Bisnis
Address         : Perumahan Ciater Permai
                         Jl. Anggrek III, Blok A5 No. 10, RT 001, RW 004, Serpong, Tangerang Selatan, Banten 15310.


1 List

1.1 Buat sebuah list untuk menyimpan 5 orang teman dekatmu

list1 = list("baim", "jimy", "dhela", "sausan", "alicia")

print(list1)
## [[1]]
## [1] "baim"
## 
## [[2]]
## [1] "jimy"
## 
## [[3]]
## [1] "dhela"
## 
## [[4]]
## [1] "sausan"
## 
## [[5]]
## [1] "alicia"

1.2 Pilihlah satu orang dari list tersebut yang menjadi teman paling dekatmu dengan menggunakan index

print(list1[3])
## [[1]]
## [1] "dhela"

1.3 Gantilah satu orang yang tidak begitu dekat denganmu dengan teman baru yang kamu temui baru-baru ini

list1[2] = "natalie"
print(list1)
## [[1]]
## [1] "baim"
## 
## [[2]]
## [1] "natalie"
## 
## [[3]]
## [1] "dhela"
## 
## [[4]]
## [1] "sausan"
## 
## [[5]]
## [1] "alicia"

1.4 Bagaimana caranya anda menghitung banyak teman yang ada dalam list tersebut

length(list1)
## [1] 5


2 Tuple

2.1 Buatlah Tuple dengan 5 item didalamnya

library(sets)
tuple2 = tuple("anjing", "kelinci", "entok", "bebek", "kucing")
print(tuple2)
## ("anjing", "kelinci", "entok", "bebek", "kucing")

2.2 Perlihatkan cara Mengakses Nilai Tuple

print(tuple2[2])
## ("kelinci")

2.3 Bagaimana anda melakukan Slicing Nilai Tuple

tuple7 = tuple("saya", "ini", "adalah", "anak", "anjing")
print(tuple7[2:5])
## ("ini", "adalah", "anak", "anjing")

2.4 Nested Tuple

tuple9 = c(tuple2 , tuple7)
print(tuple9)
## ("anjing", "kelinci", "entok", "bebek", "kucing", "saya", "ini",
##  "adalah", "anak", "anjing")


3 Dictionary

3.1 Akses suatu nilai Item dari Dictionary

library(Dict)
## 
## Attaching package: 'Dict'
## The following object is masked from 'package:sets':
## 
##     %>%
naftalibrigitta = dict(
  nama = "Naftali Brigitta Gunawan", 
  umur = as.integer(18), 
  hobi = list("main game", "membaca komik", "menyiram tanaman"), 
  menikah = FALSE, 
  sosmed = tuple(instagram = "nbrigittag", 
                 facebook = "Naftali Brigitta")
)
cat("Nama saya adalah :",naftalibrigitta$get('nama'))
## Nama saya adalah : Naftali Brigitta Gunawan
print(naftalibrigitta$get('sosmed') ['instagram'])
## (instagram = "nbrigittag")

3.2 Ubah suatu Nilai Item pada Dictionary

naftalibrigitta['sosmed']['facebook'] = "Naftali Brigitta yang profilnya mirror selfie"
print(naftalibrigitta$get('sosmed') ['facebook'])
## (facebook = "Naftali Brigitta yang profilnya mirror selfie")

3.3 Menambahkan Item ke Dictionary

naftalibrigitta$add("nama panggilan" = "Naf")
print(naftalibrigitta)
## # A tibble: 6 x 2
##   key            value     
##   <chr>          <list>    
## 1 hobi           <list [3]>
## 2 menikah        <lgl [1]> 
## 3 nama           <chr [1]> 
## 4 sosmed         <tuple>   
## 5 umur           <int [1]> 
## 6 nama panggilan <chr [1]>

3.4 Menghapus Item dari Dictionary

naftalibrigitta$clear()
print(naftalibrigitta)
## # A tibble: 0 x 2
## # ... with 2 variables: key <chr>, value <list>


4 Data Frame

df1_R <- data.frame(kode = c (1:5), 
                     nama = c("Silvanna","Natasha","Julian","Moy","Kusdhiono"), 
                     gaji = c(500, 900, 700, 600, 800), 
              mulai_kerja =  as.Date(c("1972-08-30","1973-09-15","1978-07-06","1951-10-01","1952-01-06")), 
                     divisi = c ("DS","BS","BA","DA","CS"), stringsAsFactors = F )
print(df1_R)
##   kode      nama gaji mulai_kerja divisi
## 1    1  Silvanna  500  1972-08-30     DS
## 2    2   Natasha  900  1973-09-15     BS
## 3    3    Julian  700  1978-07-06     BA
## 4    4       Moy  600  1951-10-01     DA
## 5    5 Kusdhiono  800  1952-01-06     CS

5 Operasi

5.1 Pengindeksan, Pengirisan, Subsetting

typeof (df1_R) 
## [1] "list"
class (df1_R) 
## [1] "data.frame"
df1_R[1,5] 
## [1] "DS"
df1_R[,c('nama','gaji')] 
##        nama gaji
## 1  Silvanna  500
## 2   Natasha  900
## 3    Julian  700
## 4       Moy  600
## 5 Kusdhiono  800
df1_R[1:5,] 
##   kode      nama gaji mulai_kerja divisi
## 1    1  Silvanna  500  1972-08-30     DS
## 2    2   Natasha  900  1973-09-15     BS
## 3    3    Julian  700  1978-07-06     BA
## 4    4       Moy  600  1951-10-01     DA
## 5    5 Kusdhiono  800  1952-01-06     CS


6 Ganti Nama Variabel

df2_R <- df1_R
names(df2_R)<-c("Kode", 
                   "Nama",
                   "Gaji",
                   "Mulai Bekerja",
                   "Divisi")

print(df2_R)
##   Kode      Nama Gaji Mulai Bekerja Divisi
## 1    1  Silvanna  500    1972-08-30     DS
## 2    2   Natasha  900    1973-09-15     BS
## 3    3    Julian  700    1978-07-06     BA
## 4    4       Moy  600    1951-10-01     DA
## 5    5 Kusdhiono  800    1952-01-06     CS
LS0tDQp0aXRsZTogIlR1Z2FzIDMiDQpzdWJ0aXRsZTogIk1lbmdlbmFsIFN0cnVrdHVyIERhdGEiDQphdXRob3I6ICJOYWZ0YWxpIEJyaWdpdHRhIEd1bmF3YW4gKDIwMjE0OTIwMDAyKSINCmRhdGU6ICJgciBmb3JtYXQoU3lzLkRhdGUoKSwgJyVCICVkLCAlWScpYCINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6IA0KICAgIGh0bWxfZG9jdW1lbnQ6IG51bGwNCiAgICBjb2RlX2ZvbGRpbmc6IGhpZGUNCiAgICB0b2M6IHllcw0KICAgIHRvY19mbG9hdDoNCiAgICAgIGNvbGxhcHNlZDogeWVzDQogICAgbnVtYmVyX3NlY3Rpb25zOiB5ZXMNCiAgICBjb2RlX2Rvd25sb2FkOiB5ZXMNCiAgICB0aGVtZTogc2FuZHN0b25lDQogICAgY3NzOiBzdHlsZTEuY3NzDQogICAgaGlnaGxpZ2h0OiBtb25vY2hyb21lDQotLS0NCg0KDQo8aW1nIHN0eWxlPSJmbG9hdDogcmlnaHQ7IG1hcmdpbjogMHB4IDEwMHB4IDBweCAwcHg7IHdpZHRoOjI1JSIgc3JjPSJGT1RPIE5BRlRBTEkuanBlZyIvPiANCg0KYGBge3IgbG9nbywgZWNobz1GQUxTRSxmaWcuYWxpZ249J2NlbnRlcicsIG91dC53aWR0aCA9ICczMCUnfQ0Ka25pdHI6OmluY2x1ZGVfZ3JhcGhpY3MoImxvZ28gbWF0YW5hLnBuZyIpDQpgYGANCg0KRW1haWwgJm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7Jm5ic3A7OiAgbmFmdGFsaS5ndW5hd2FuQHN0dWRlbnQubWF0YW5hdW5pdmVyc2l0eS5hYy5pZCA8YnI+DQpSUHVicyAgJm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7OiBodHRwczovL3JwdWJzLmNvbS9uYWZ0YWxpYnJpZ2l0dGEvIDxicj4NCkp1cnVzYW4gJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOzogW1N0YXRpc3Rpa2EgQmlzbmlzXShodHRwczovL21hdGFuYXVuaXZlcnNpdHkuYWMuaWQvP2x5PWFjYWRlbWljJmM9c2IpIDxicj4NCkFkZHJlc3MgICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyA6IFBlcnVtYWhhbiBDaWF0ZXIgUGVybWFpPGJyPg0KJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsmbmJzcDsgSmwuIEFuZ2dyZWsgSUlJLCBCbG9rIEE1IE5vLiAxMCwgUlQgMDAxLCBSVyAwMDQsIFNlcnBvbmcsIFRhbmdlcmFuZyBTZWxhdGFuLCBCYW50ZW4gMTUzMTAuDQoNCioqKioNCiMgTGlzdA0KDQojIyBCdWF0IHNlYnVhaCBsaXN0IHVudHVrIG1lbnlpbXBhbiA1IG9yYW5nIHRlbWFuIGRla2F0bXUNCmBgYHtyfQ0KbGlzdDEgPSBsaXN0KCJiYWltIiwgImppbXkiLCAiZGhlbGEiLCAic2F1c2FuIiwgImFsaWNpYSIpDQoNCnByaW50KGxpc3QxKQ0KYGBgDQoNCg0KIyMgUGlsaWhsYWggc2F0dSBvcmFuZyBkYXJpIGxpc3QgdGVyc2VidXQgeWFuZyBtZW5qYWRpIHRlbWFuIHBhbGluZyBkZWthdG11ICBkZW5nYW4gbWVuZ2d1bmFrYW4gaW5kZXgNCmBgYHtyfQ0KcHJpbnQobGlzdDFbM10pDQpgYGANCg0KDQojIyBHYW50aWxhaCBzYXR1IG9yYW5nIHlhbmcgdGlkYWsgYmVnaXR1IGRla2F0IGRlbmdhbm11IGRlbmdhbiB0ZW1hbiBiYXJ1IHlhbmcga2FtdSB0ZW11aSBiYXJ1LWJhcnUgaW5pDQpgYGB7cn0NCmxpc3QxWzJdID0gIm5hdGFsaWUiDQpwcmludChsaXN0MSkNCmBgYA0KDQoNCiMjIEJhZ2FpbWFuYSBjYXJhbnlhIGFuZGEgbWVuZ2hpdHVuZyBiYW55YWsgdGVtYW4geWFuZyBhZGEgZGFsYW0gbGlzdCB0ZXJzZWJ1dA0KYGBge3J9DQpsZW5ndGgobGlzdDEpDQpgYGANCg0KDQo8YnI+DQoNCg0KIyBUdXBsZQ0KDQojIyBCdWF0bGFoIFR1cGxlIGRlbmdhbiA1IGl0ZW0gZGlkYWxhbW55YQ0KYGBge3J9DQpsaWJyYXJ5KHNldHMpDQp0dXBsZTIgPSB0dXBsZSgiYW5qaW5nIiwgImtlbGluY2kiLCAiZW50b2siLCAiYmViZWsiLCAia3VjaW5nIikNCnByaW50KHR1cGxlMikNCmBgYA0KDQojIyBQZXJsaWhhdGthbiBjYXJhIE1lbmdha3NlcyBOaWxhaSBUdXBsZQ0KYGBge3J9DQpwcmludCh0dXBsZTJbMl0pDQpgYGANCg0KIyMgQmFnYWltYW5hIGFuZGEgbWVsYWt1a2FuIFNsaWNpbmcgTmlsYWkgVHVwbGUNCmBgYHtyfQ0KdHVwbGU3ID0gdHVwbGUoInNheWEiLCAiaW5pIiwgImFkYWxhaCIsICJhbmFrIiwgImFuamluZyIpDQpwcmludCh0dXBsZTdbMjo1XSkNCmBgYA0KDQojIyBOZXN0ZWQgVHVwbGUNCmBgYHtyfQ0KdHVwbGU5ID0gYyh0dXBsZTIgLCB0dXBsZTcpDQpwcmludCh0dXBsZTkpDQpgYGANCg0KDQo8YnI+DQoNCiMgRGljdGlvbmFyeQ0KIyMgQWtzZXMgc3VhdHUgbmlsYWkgSXRlbSBkYXJpIERpY3Rpb25hcnkgDQpgYGB7cn0NCmxpYnJhcnkoRGljdCkNCm5hZnRhbGlicmlnaXR0YSA9IGRpY3QoDQogIG5hbWEgPSAiTmFmdGFsaSBCcmlnaXR0YSBHdW5hd2FuIiwgDQogIHVtdXIgPSBhcy5pbnRlZ2VyKDE4KSwgDQogIGhvYmkgPSBsaXN0KCJtYWluIGdhbWUiLCAibWVtYmFjYSBrb21payIsICJtZW55aXJhbSB0YW5hbWFuIiksIA0KICBtZW5pa2FoID0gRkFMU0UsIA0KICBzb3NtZWQgPSB0dXBsZShpbnN0YWdyYW0gPSAibmJyaWdpdHRhZyIsIA0KICAgICAgICAgICAgICAgICBmYWNlYm9vayA9ICJOYWZ0YWxpIEJyaWdpdHRhIikNCikNCmBgYA0KDQpgYGB7cn0NCmNhdCgiTmFtYSBzYXlhIGFkYWxhaCA6IixuYWZ0YWxpYnJpZ2l0dGEkZ2V0KCduYW1hJykpDQpwcmludChuYWZ0YWxpYnJpZ2l0dGEkZ2V0KCdzb3NtZWQnKSBbJ2luc3RhZ3JhbSddKQ0KYGBgDQoNCiMjIFViYWggc3VhdHUgTmlsYWkgSXRlbSBwYWRhIERpY3Rpb25hcnkNCmBgYHtyfQ0KbmFmdGFsaWJyaWdpdHRhWydzb3NtZWQnXVsnZmFjZWJvb2snXSA9ICJOYWZ0YWxpIEJyaWdpdHRhIHlhbmcgcHJvZmlsbnlhIG1pcnJvciBzZWxmaWUiDQpwcmludChuYWZ0YWxpYnJpZ2l0dGEkZ2V0KCdzb3NtZWQnKSBbJ2ZhY2Vib29rJ10pDQpgYGANCg0KIyMgTWVuYW1iYWhrYW4gSXRlbSBrZSBEaWN0aW9uYXJ5DQpgYGB7cn0NCm5hZnRhbGlicmlnaXR0YSRhZGQoIm5hbWEgcGFuZ2dpbGFuIiA9ICJOYWYiKQ0KcHJpbnQobmFmdGFsaWJyaWdpdHRhKQ0KYGBgDQoNCiMjIE1lbmdoYXB1cyBJdGVtIGRhcmkgRGljdGlvbmFyeQ0KYGBge3J9DQpuYWZ0YWxpYnJpZ2l0dGEkY2xlYXIoKQ0KcHJpbnQobmFmdGFsaWJyaWdpdHRhKQ0KYGBgDQoNCg0KPGJyPg0KDQoNCiMgRGF0YSBGcmFtZQ0KYGBge3J9DQpkZjFfUiA8LSBkYXRhLmZyYW1lKGtvZGUgPSBjICgxOjUpLCANCiAgICAgICAgICAgICAgICAgICAgIG5hbWEgPSBjKCJTaWx2YW5uYSIsIk5hdGFzaGEiLCJKdWxpYW4iLCJNb3kiLCJLdXNkaGlvbm8iKSwgDQogICAgICAgICAgICAgICAgICAgICBnYWppID0gYyg1MDAsIDkwMCwgNzAwLCA2MDAsIDgwMCksIA0KICAgICAgICAgICAgICBtdWxhaV9rZXJqYSA9ICBhcy5EYXRlKGMoIjE5NzItMDgtMzAiLCIxOTczLTA5LTE1IiwiMTk3OC0wNy0wNiIsIjE5NTEtMTAtMDEiLCIxOTUyLTAxLTA2IikpLCANCiAgICAgICAgICAgICAgICAgICAgIGRpdmlzaSA9IGMgKCJEUyIsIkJTIiwiQkEiLCJEQSIsIkNTIiksIHN0cmluZ3NBc0ZhY3RvcnMgPSBGICkNCnByaW50KGRmMV9SKQ0KYGBgDQoNCiMgT3BlcmFzaQ0KIyMgUGVuZ2luZGVrc2FuLCBQZW5naXJpc2FuLCBTdWJzZXR0aW5nDQpgYGB7cn0NCnR5cGVvZiAoZGYxX1IpIA0KY2xhc3MgKGRmMV9SKSANCmRmMV9SWzEsNV0gDQpkZjFfUlssYygnbmFtYScsJ2dhamknKV0gDQpkZjFfUlsxOjUsXSANCmBgYA0KDQoNCjxicj4NCg0KIyBHYW50aSBOYW1hIFZhcmlhYmVsDQpgYGB7cn0NCmRmMl9SIDwtIGRmMV9SDQpuYW1lcyhkZjJfUik8LWMoIktvZGUiLCANCiAgICAgICAgICAgICAgICAgICAiTmFtYSIsDQogICAgICAgICAgICAgICAgICAgIkdhamkiLA0KICAgICAgICAgICAgICAgICAgICJNdWxhaSBCZWtlcmphIiwNCiAgICAgICAgICAgICAgICAgICAiRGl2aXNpIikNCg0KcHJpbnQoZGYyX1IpDQpgYGANCg0KDQo=