

Email : naftali.gunawan@student.matanauniversity.ac.id
RPubs : https://rpubs.com/naftalibrigitta/
Jurusan : Statistika Bisnis
Address : Perumahan Ciater Permai
Jl. Anggrek III, Blok A5 No. 10, RT 001, RW 004, Serpong, Tangerang Selatan, Banten 15310.
List
Buat sebuah list untuk menyimpan 5 orang teman dekatmu
list1 = list("baim", "jimy", "dhela", "sausan", "alicia")
print(list1)
## [[1]]
## [1] "baim"
##
## [[2]]
## [1] "jimy"
##
## [[3]]
## [1] "dhela"
##
## [[4]]
## [1] "sausan"
##
## [[5]]
## [1] "alicia"
Pilihlah satu orang dari list tersebut yang menjadi teman paling dekatmu dengan menggunakan index
## [[1]]
## [1] "dhela"
Gantilah satu orang yang tidak begitu dekat denganmu dengan teman baru yang kamu temui baru-baru ini
list1[2] = "natalie"
print(list1)
## [[1]]
## [1] "baim"
##
## [[2]]
## [1] "natalie"
##
## [[3]]
## [1] "dhela"
##
## [[4]]
## [1] "sausan"
##
## [[5]]
## [1] "alicia"
Bagaimana caranya anda menghitung banyak teman yang ada dalam list tersebut
## [1] 5
Tuple
Buatlah Tuple dengan 5 item didalamnya
library(sets)
tuple2 = tuple("anjing", "kelinci", "entok", "bebek", "kucing")
print(tuple2)
## ("anjing", "kelinci", "entok", "bebek", "kucing")
Perlihatkan cara Mengakses Nilai Tuple
## ("kelinci")
Bagaimana anda melakukan Slicing Nilai Tuple
tuple7 = tuple("saya", "ini", "adalah", "anak", "anjing")
print(tuple7[2:5])
## ("ini", "adalah", "anak", "anjing")
Nested Tuple
tuple9 = c(tuple2 , tuple7)
print(tuple9)
## ("anjing", "kelinci", "entok", "bebek", "kucing", "saya", "ini",
## "adalah", "anak", "anjing")
Dictionary
Akses suatu nilai Item dari Dictionary
##
## Attaching package: 'Dict'
## The following object is masked from 'package:sets':
##
## %>%
naftalibrigitta = dict(
nama = "Naftali Brigitta Gunawan",
umur = as.integer(18),
hobi = list("main game", "membaca komik", "menyiram tanaman"),
menikah = FALSE,
sosmed = tuple(instagram = "nbrigittag",
facebook = "Naftali Brigitta")
)
cat("Nama saya adalah :",naftalibrigitta$get('nama'))
## Nama saya adalah : Naftali Brigitta Gunawan
print(naftalibrigitta$get('sosmed') ['instagram'])
## (instagram = "nbrigittag")
Ubah suatu Nilai Item pada Dictionary
naftalibrigitta['sosmed']['facebook'] = "Naftali Brigitta yang profilnya mirror selfie"
print(naftalibrigitta$get('sosmed') ['facebook'])
## (facebook = "Naftali Brigitta yang profilnya mirror selfie")
Menambahkan Item ke Dictionary
naftalibrigitta$add("nama panggilan" = "Naf")
print(naftalibrigitta)
## # A tibble: 6 x 2
## key value
## <chr> <list>
## 1 hobi <list [3]>
## 2 menikah <lgl [1]>
## 3 nama <chr [1]>
## 4 sosmed <tuple>
## 5 umur <int [1]>
## 6 nama panggilan <chr [1]>
Menghapus Item dari Dictionary
naftalibrigitta$clear()
print(naftalibrigitta)
## # A tibble: 0 x 2
## # ... with 2 variables: key <chr>, value <list>
Data Frame
df1_R <- data.frame(kode = c (1:5),
nama = c("Silvanna","Natasha","Julian","Moy","Kusdhiono"),
gaji = c(500, 900, 700, 600, 800),
mulai_kerja = as.Date(c("1972-08-30","1973-09-15","1978-07-06","1951-10-01","1952-01-06")),
divisi = c ("DS","BS","BA","DA","CS"), stringsAsFactors = F )
print(df1_R)
## kode nama gaji mulai_kerja divisi
## 1 1 Silvanna 500 1972-08-30 DS
## 2 2 Natasha 900 1973-09-15 BS
## 3 3 Julian 700 1978-07-06 BA
## 4 4 Moy 600 1951-10-01 DA
## 5 5 Kusdhiono 800 1952-01-06 CS
Operasi
Pengindeksan, Pengirisan, Subsetting
## [1] "list"
## [1] "data.frame"
## [1] "DS"
## nama gaji
## 1 Silvanna 500
## 2 Natasha 900
## 3 Julian 700
## 4 Moy 600
## 5 Kusdhiono 800
## kode nama gaji mulai_kerja divisi
## 1 1 Silvanna 500 1972-08-30 DS
## 2 2 Natasha 900 1973-09-15 BS
## 3 3 Julian 700 1978-07-06 BA
## 4 4 Moy 600 1951-10-01 DA
## 5 5 Kusdhiono 800 1952-01-06 CS
Ganti Nama Variabel
df2_R <- df1_R
names(df2_R)<-c("Kode",
"Nama",
"Gaji",
"Mulai Bekerja",
"Divisi")
print(df2_R)
## Kode Nama Gaji Mulai Bekerja Divisi
## 1 1 Silvanna 500 1972-08-30 DS
## 2 2 Natasha 900 1973-09-15 BS
## 3 3 Julian 700 1978-07-06 BA
## 4 4 Moy 600 1951-10-01 DA
## 5 5 Kusdhiono 800 1952-01-06 CS
LS0tDQp0aXRsZTogIlR1Z2FzIDMiDQpzdWJ0aXRsZTogIk1lbmdlbmFsIFN0cnVrdHVyIERhdGEiDQphdXRob3I6ICJOYWZ0YWxpIEJyaWdpdHRhIEd1bmF3YW4gKDIwMjE0OTIwMDAyKSINCmRhdGU6ICJgciBmb3JtYXQoU3lzLkRhdGUoKSwgJyVCICVkLCAlWScpYCINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6IA0KICAgIGh0bWxfZG9jdW1lbnQ6IG51bGwNCiAgICBjb2RlX2ZvbGRpbmc6IGhpZGUNCiAgICB0b2M6IHllcw0KICAgIHRvY19mbG9hdDoNCiAgICAgIGNvbGxhcHNlZDogeWVzDQogICAgbnVtYmVyX3NlY3Rpb25zOiB5ZXMNCiAgICBjb2RlX2Rvd25sb2FkOiB5ZXMNCiAgICB0aGVtZTogc2FuZHN0b25lDQogICAgY3NzOiBzdHlsZTEuY3NzDQogICAgaGlnaGxpZ2h0OiBtb25vY2hyb21lDQotLS0NCg0KDQo8aW1nIHN0eWxlPSJmbG9hdDogcmlnaHQ7IG1hcmdpbjogMHB4IDEwMHB4IDBweCAwcHg7IHdpZHRoOjI1JSIgc3JjPSJGT1RPIE5BRlRBTEkuanBlZyIvPiANCg0KYGBge3IgbG9nbywgZWNobz1GQUxTRSxmaWcuYWxpZ249J2NlbnRlcicsIG91dC53aWR0aCA9ICczMCUnfQ0Ka25pdHI6OmluY2x1ZGVfZ3JhcGhpY3MoImxvZ28gbWF0YW5hLnBuZyIpDQpgYGANCg0KRW1haWwgJm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7Jm5ic3A7OiAgbmFmdGFsaS5ndW5hd2FuQHN0dWRlbnQubWF0YW5hdW5pdmVyc2l0eS5hYy5pZCA8YnI+DQpSUHVicyAgJm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7OiBodHRwczovL3JwdWJzLmNvbS9uYWZ0YWxpYnJpZ2l0dGEvIDxicj4NCkp1cnVzYW4gJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOzogW1N0YXRpc3Rpa2EgQmlzbmlzXShodHRwczovL21hdGFuYXVuaXZlcnNpdHkuYWMuaWQvP2x5PWFjYWRlbWljJmM9c2IpIDxicj4NCkFkZHJlc3MgICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyA6IFBlcnVtYWhhbiBDaWF0ZXIgUGVybWFpPGJyPg0KJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsgJm5ic3A7ICZuYnNwOyAmbmJzcDsmbmJzcDsgSmwuIEFuZ2dyZWsgSUlJLCBCbG9rIEE1IE5vLiAxMCwgUlQgMDAxLCBSVyAwMDQsIFNlcnBvbmcsIFRhbmdlcmFuZyBTZWxhdGFuLCBCYW50ZW4gMTUzMTAuDQoNCioqKioNCiMgTGlzdA0KDQojIyBCdWF0IHNlYnVhaCBsaXN0IHVudHVrIG1lbnlpbXBhbiA1IG9yYW5nIHRlbWFuIGRla2F0bXUNCmBgYHtyfQ0KbGlzdDEgPSBsaXN0KCJiYWltIiwgImppbXkiLCAiZGhlbGEiLCAic2F1c2FuIiwgImFsaWNpYSIpDQoNCnByaW50KGxpc3QxKQ0KYGBgDQoNCg0KIyMgUGlsaWhsYWggc2F0dSBvcmFuZyBkYXJpIGxpc3QgdGVyc2VidXQgeWFuZyBtZW5qYWRpIHRlbWFuIHBhbGluZyBkZWthdG11ICBkZW5nYW4gbWVuZ2d1bmFrYW4gaW5kZXgNCmBgYHtyfQ0KcHJpbnQobGlzdDFbM10pDQpgYGANCg0KDQojIyBHYW50aWxhaCBzYXR1IG9yYW5nIHlhbmcgdGlkYWsgYmVnaXR1IGRla2F0IGRlbmdhbm11IGRlbmdhbiB0ZW1hbiBiYXJ1IHlhbmcga2FtdSB0ZW11aSBiYXJ1LWJhcnUgaW5pDQpgYGB7cn0NCmxpc3QxWzJdID0gIm5hdGFsaWUiDQpwcmludChsaXN0MSkNCmBgYA0KDQoNCiMjIEJhZ2FpbWFuYSBjYXJhbnlhIGFuZGEgbWVuZ2hpdHVuZyBiYW55YWsgdGVtYW4geWFuZyBhZGEgZGFsYW0gbGlzdCB0ZXJzZWJ1dA0KYGBge3J9DQpsZW5ndGgobGlzdDEpDQpgYGANCg0KDQo8YnI+DQoNCg0KIyBUdXBsZQ0KDQojIyBCdWF0bGFoIFR1cGxlIGRlbmdhbiA1IGl0ZW0gZGlkYWxhbW55YQ0KYGBge3J9DQpsaWJyYXJ5KHNldHMpDQp0dXBsZTIgPSB0dXBsZSgiYW5qaW5nIiwgImtlbGluY2kiLCAiZW50b2siLCAiYmViZWsiLCAia3VjaW5nIikNCnByaW50KHR1cGxlMikNCmBgYA0KDQojIyBQZXJsaWhhdGthbiBjYXJhIE1lbmdha3NlcyBOaWxhaSBUdXBsZQ0KYGBge3J9DQpwcmludCh0dXBsZTJbMl0pDQpgYGANCg0KIyMgQmFnYWltYW5hIGFuZGEgbWVsYWt1a2FuIFNsaWNpbmcgTmlsYWkgVHVwbGUNCmBgYHtyfQ0KdHVwbGU3ID0gdHVwbGUoInNheWEiLCAiaW5pIiwgImFkYWxhaCIsICJhbmFrIiwgImFuamluZyIpDQpwcmludCh0dXBsZTdbMjo1XSkNCmBgYA0KDQojIyBOZXN0ZWQgVHVwbGUNCmBgYHtyfQ0KdHVwbGU5ID0gYyh0dXBsZTIgLCB0dXBsZTcpDQpwcmludCh0dXBsZTkpDQpgYGANCg0KDQo8YnI+DQoNCiMgRGljdGlvbmFyeQ0KIyMgQWtzZXMgc3VhdHUgbmlsYWkgSXRlbSBkYXJpIERpY3Rpb25hcnkgDQpgYGB7cn0NCmxpYnJhcnkoRGljdCkNCm5hZnRhbGlicmlnaXR0YSA9IGRpY3QoDQogIG5hbWEgPSAiTmFmdGFsaSBCcmlnaXR0YSBHdW5hd2FuIiwgDQogIHVtdXIgPSBhcy5pbnRlZ2VyKDE4KSwgDQogIGhvYmkgPSBsaXN0KCJtYWluIGdhbWUiLCAibWVtYmFjYSBrb21payIsICJtZW55aXJhbSB0YW5hbWFuIiksIA0KICBtZW5pa2FoID0gRkFMU0UsIA0KICBzb3NtZWQgPSB0dXBsZShpbnN0YWdyYW0gPSAibmJyaWdpdHRhZyIsIA0KICAgICAgICAgICAgICAgICBmYWNlYm9vayA9ICJOYWZ0YWxpIEJyaWdpdHRhIikNCikNCmBgYA0KDQpgYGB7cn0NCmNhdCgiTmFtYSBzYXlhIGFkYWxhaCA6IixuYWZ0YWxpYnJpZ2l0dGEkZ2V0KCduYW1hJykpDQpwcmludChuYWZ0YWxpYnJpZ2l0dGEkZ2V0KCdzb3NtZWQnKSBbJ2luc3RhZ3JhbSddKQ0KYGBgDQoNCiMjIFViYWggc3VhdHUgTmlsYWkgSXRlbSBwYWRhIERpY3Rpb25hcnkNCmBgYHtyfQ0KbmFmdGFsaWJyaWdpdHRhWydzb3NtZWQnXVsnZmFjZWJvb2snXSA9ICJOYWZ0YWxpIEJyaWdpdHRhIHlhbmcgcHJvZmlsbnlhIG1pcnJvciBzZWxmaWUiDQpwcmludChuYWZ0YWxpYnJpZ2l0dGEkZ2V0KCdzb3NtZWQnKSBbJ2ZhY2Vib29rJ10pDQpgYGANCg0KIyMgTWVuYW1iYWhrYW4gSXRlbSBrZSBEaWN0aW9uYXJ5DQpgYGB7cn0NCm5hZnRhbGlicmlnaXR0YSRhZGQoIm5hbWEgcGFuZ2dpbGFuIiA9ICJOYWYiKQ0KcHJpbnQobmFmdGFsaWJyaWdpdHRhKQ0KYGBgDQoNCiMjIE1lbmdoYXB1cyBJdGVtIGRhcmkgRGljdGlvbmFyeQ0KYGBge3J9DQpuYWZ0YWxpYnJpZ2l0dGEkY2xlYXIoKQ0KcHJpbnQobmFmdGFsaWJyaWdpdHRhKQ0KYGBgDQoNCg0KPGJyPg0KDQoNCiMgRGF0YSBGcmFtZQ0KYGBge3J9DQpkZjFfUiA8LSBkYXRhLmZyYW1lKGtvZGUgPSBjICgxOjUpLCANCiAgICAgICAgICAgICAgICAgICAgIG5hbWEgPSBjKCJTaWx2YW5uYSIsIk5hdGFzaGEiLCJKdWxpYW4iLCJNb3kiLCJLdXNkaGlvbm8iKSwgDQogICAgICAgICAgICAgICAgICAgICBnYWppID0gYyg1MDAsIDkwMCwgNzAwLCA2MDAsIDgwMCksIA0KICAgICAgICAgICAgICBtdWxhaV9rZXJqYSA9ICBhcy5EYXRlKGMoIjE5NzItMDgtMzAiLCIxOTczLTA5LTE1IiwiMTk3OC0wNy0wNiIsIjE5NTEtMTAtMDEiLCIxOTUyLTAxLTA2IikpLCANCiAgICAgICAgICAgICAgICAgICAgIGRpdmlzaSA9IGMgKCJEUyIsIkJTIiwiQkEiLCJEQSIsIkNTIiksIHN0cmluZ3NBc0ZhY3RvcnMgPSBGICkNCnByaW50KGRmMV9SKQ0KYGBgDQoNCiMgT3BlcmFzaQ0KIyMgUGVuZ2luZGVrc2FuLCBQZW5naXJpc2FuLCBTdWJzZXR0aW5nDQpgYGB7cn0NCnR5cGVvZiAoZGYxX1IpIA0KY2xhc3MgKGRmMV9SKSANCmRmMV9SWzEsNV0gDQpkZjFfUlssYygnbmFtYScsJ2dhamknKV0gDQpkZjFfUlsxOjUsXSANCmBgYA0KDQoNCjxicj4NCg0KIyBHYW50aSBOYW1hIFZhcmlhYmVsDQpgYGB7cn0NCmRmMl9SIDwtIGRmMV9SDQpuYW1lcyhkZjJfUik8LWMoIktvZGUiLCANCiAgICAgICAgICAgICAgICAgICAiTmFtYSIsDQogICAgICAgICAgICAgICAgICAgIkdhamkiLA0KICAgICAgICAgICAgICAgICAgICJNdWxhaSBCZWtlcmphIiwNCiAgICAgICAgICAgICAgICAgICAiRGl2aXNpIikNCg0KcHJpbnQoZGYyX1IpDQpgYGANCg0KDQo=