Outline
This document contains all the plots/tables needed for the Faces-Slides that I can make in R. NOTE I’ve added a tab to the google-sheet with names matched and the slide-show reference, that’s where the names for these plots are from (i.e. Figure 3.a etc.).
I’ve also split this document into Figures and Tables in two seperate sections.
Tables
Summary Statistics
| Variable |
Count-Train |
Count-Val |
Count-All |
| AvrAge |
31.880 |
31.689 |
31.822 |
| percentBlack |
0.695 |
0.698 |
0.696 |
| percentWhite |
0.277 |
0.271 |
0.275 |
| percentOther |
0.028 |
0.031 |
0.029 |
| percentMale |
0.790 |
0.784 |
0.788 |
| percentFemale |
0.210 |
0.216 |
0.212 |
| percentFelony |
0.415 |
0.427 |
0.419 |
| percentViolent |
0.089 |
0.092 |
0.090 |
| percentGunCrime |
0.070 |
0.072 |
0.070 |
| percentDrugCrime |
0.179 |
0.183 |
0.180 |
| percentPropertyCrime |
0.271 |
0.275 |
0.272 |
| percentMisdRecord |
0.313 |
0.322 |
0.316 |
| percentFelonyRecord |
0.332 |
0.333 |
0.333 |
| percentAnyRecord |
0.460 |
0.463 |
0.461 |
| percentReArrest |
0.275 |
0.274 |
0.275 |
| percentReleaseOutcome |
0.770 |
0.762 |
0.767 |
| Count |
20020.000 |
8835.000 |
28855.000 |
| Count_2017 |
7177.000 |
3165.000 |
10342.000 |
| Count_2018 |
8549.000 |
3773.000 |
12322.000 |
| Count_2019 |
4294.000 |
1897.000 |
6191.000 |
## \captionsetup[table]{labelformat=empty,skip=1pt}
## \begin{longtable}{lrrr}
## \caption*{
## \large Summary Statistics - Population Overview\\
## \small \\
## } \\
## \toprule
## Variable & Count-Train & Count-Val & Count-All \\
## \midrule
## AvrAge & $31.880$ & $31.689$ & $31.822$ \\
## percentBlack & $0.695$ & $0.698$ & $0.696$ \\
## percentWhite & $0.277$ & $0.271$ & $0.275$ \\
## percentOther & $0.028$ & $0.031$ & $0.029$ \\
## percentMale & $0.790$ & $0.784$ & $0.788$ \\
## percentFemale & $0.210$ & $0.216$ & $0.212$ \\
## percentFelony & $0.415$ & $0.427$ & $0.419$ \\
## percentViolent & $0.089$ & $0.092$ & $0.090$ \\
## percentGunCrime & $0.070$ & $0.072$ & $0.070$ \\
## percentDrugCrime & $0.179$ & $0.183$ & $0.180$ \\
## percentPropertyCrime & $0.271$ & $0.275$ & $0.272$ \\
## percentMisdRecord & $0.313$ & $0.322$ & $0.316$ \\
## percentFelonyRecord & $0.332$ & $0.333$ & $0.333$ \\
## percentAnyRecord & $0.460$ & $0.463$ & $0.461$ \\
## percentReArrest & $0.275$ & $0.274$ & $0.275$ \\
## percentReleaseOutcome & $0.770$ & $0.762$ & $0.767$ \\
## Count & $20020.000$ & $8835.000$ & $28855.000$ \\
## Count\_2017 & $7177.000$ & $3165.000$ & $10342.000$ \\
## Count\_2018 & $8549.000$ & $3773.000$ & $12322.000$ \\
## Count\_2019 & $4294.000$ & $1897.000$ & $6191.000$ \\
## \bottomrule
## \end{longtable}
## Df Pillai approx F num Df den Df Pr(>F)
## train_val 1 0.00034146 1.6423 6 28848 0.131
## Residuals 28853
## Response age_arrest :
## Df Sum Sq Mean Sq F value Pr(>F)
## train_val 1 225 224.63 1.6748 0.1956
## Residuals 28853 3870030 134.13
##
## Response gender_male :
## Df Sum Sq Mean Sq F value Pr(>F)
## train_val 1 0.2 0.20687 1.2372 0.266
## Residuals 28853 4824.7 0.16722
##
## Response race_black :
## Df Sum Sq Mean Sq F value Pr(>F)
## train_val 1 0.0 0.043089 0.2037 0.6518
## Residuals 28853 6104.5 0.211571
##
## Response race_other :
## Df Sum Sq Mean Sq F value Pr(>F)
## train_val 1 0.05 0.048104 1.7239 0.1892
## Residuals 28853 805.13 0.027905
##
## Response misd_true :
## Df Sum Sq Mean Sq F value Pr(>F)
## train_val 1 0.5 0.50217 2.3253 0.1273
## Residuals 28853 6231.1 0.21596
##
## Response felon_true :
## Df Sum Sq Mean Sq F value Pr(>F)
## train_val 1 0.0 0.001698 0.0076 0.9303
## Residuals 28853 6405.4 0.222002
MTurk Summary Statistics No.1
| skin_tone |
count |
PercentBlack |
PercentWhite |
PercentOther |
| #301e10 |
517 |
100.00 |
0.00 |
0.00 |
| #623a17 |
1688 |
99.82 |
0.12 |
0.06 |
| #76441f |
846 |
99.76 |
0.00 |
0.24 |
| #80492a |
868 |
99.31 |
0.35 |
0.35 |
| #885633 |
1350 |
99.41 |
0.52 |
0.07 |
| #94623d |
2022 |
99.26 |
0.49 |
0.25 |
| #ab8b64 |
1435 |
95.68 |
3.07 |
1.25 |
| #b26949 |
338 |
55.62 |
39.94 |
4.44 |
| #cb9662 |
828 |
82.73 |
13.29 |
3.99 |
| #d09e7d |
338 |
54.73 |
37.28 |
7.99 |
| #e7bc91 |
508 |
24.41 |
67.52 |
8.07 |
| #e9cba7 |
422 |
4.98 |
91.71 |
3.32 |
| #ecc083 |
457 |
49.89 |
36.76 |
13.35 |
| #eed0b8 |
882 |
4.42 |
91.16 |
4.42 |
| #efc088 |
302 |
12.25 |
76.49 |
11.26 |
| #efc794 |
514 |
14.01 |
75.49 |
10.51 |
| #f6e1aa |
414 |
11.11 |
80.92 |
7.97 |
| #f7ddc4 |
1088 |
3.95 |
93.01 |
3.03 |
## \captionsetup[table]{labelformat=empty,skip=1pt}
## \begin{longtable}{lcrrr}
## \caption*{
## \large MTurk Summary Statistics No.1 - Skin Tone Data\\
## \small \\
## } \\
## \toprule
## skin\_tone & count & PercentBlack & PercentWhite & PercentOther \\
## \midrule
## \#301e10 & 517 & $100.00$ & $0.00$ & $0.00$ \\
## \#623a17 & 1688 & $99.82$ & $0.12$ & $0.06$ \\
## \#76441f & 846 & $99.76$ & $0.00$ & $0.24$ \\
## \#80492a & 868 & $99.31$ & $0.35$ & $0.35$ \\
## \#885633 & 1350 & $99.41$ & $0.52$ & $0.07$ \\
## \#94623d & 2022 & $99.26$ & $0.49$ & $0.25$ \\
## \#ab8b64 & 1435 & $95.68$ & $3.07$ & $1.25$ \\
## \#b26949 & 338 & $55.62$ & $39.94$ & $4.44$ \\
## \#cb9662 & 828 & $82.73$ & $13.29$ & $3.99$ \\
## \#d09e7d & 338 & $54.73$ & $37.28$ & $7.99$ \\
## \#e7bc91 & 508 & $24.41$ & $67.52$ & $8.07$ \\
## \#e9cba7 & 422 & $4.98$ & $91.71$ & $3.32$ \\
## \#ecc083 & 457 & $49.89$ & $36.76$ & $13.35$ \\
## \#eed0b8 & 882 & $4.42$ & $91.16$ & $4.42$ \\
## \#efc088 & 302 & $12.25$ & $76.49$ & $11.26$ \\
## \#efc794 & 514 & $14.01$ & $75.49$ & $10.51$ \\
## \#f6e1aa & 414 & $11.11$ & $80.92$ & $7.97$ \\
## \#f7ddc4 & 1088 & $3.95$ & $93.01$ & $3.03$ \\
## \bottomrule
## \end{longtable}
MTurk Summary Statistics No.2
| ID |
mean_attractiveness |
mean_competence |
mean_dominance |
mean_trustworthiness |
mean_human_guess |
| Full Sample |
3.710862 |
3.733321 |
4.172015 |
3.339878 |
0.5021089 |
| A |
3.594127 |
3.731913 |
3.770253 |
3.473995 |
0.5175032 |
| B |
3.720118 |
3.745884 |
4.232167 |
3.363610 |
0.4921472 |
| I |
4.600000 |
4.321569 |
4.188235 |
3.996078 |
0.5661765 |
| U |
4.083596 |
4.006712 |
4.237263 |
3.602571 |
0.4989524 |
| W |
3.656360 |
3.676762 |
4.026096 |
3.251584 |
0.5267044 |
| above_34 |
3.320608 |
3.584982 |
4.205890 |
3.202959 |
0.4900435 |
| below_25 |
4.052978 |
3.847832 |
4.090316 |
3.505100 |
0.5190686 |
| between_25_34 |
3.801396 |
3.783532 |
4.217054 |
3.325672 |
0.4984155 |
| 0 |
3.643274 |
3.665749 |
4.209290 |
3.242405 |
0.4917898 |
| 1 |
3.731389 |
3.753845 |
4.160694 |
3.369482 |
0.5052430 |
## \captionsetup[table]{labelformat=empty,skip=1pt}
## \begin{longtable}{lrrrrr}
## \caption*{
## \large MTurk Summary Statistics No.2 - Psych Features\\
## \small \\
## } \\
## \toprule
## ID & mean\_attractiveness & mean\_competence & mean\_dominance & mean\_trustworthiness & mean\_human\_guess \\
## \midrule
## Full Sample & 3.710862 & 3.733321 & 4.172015 & 3.339878 & 0.5021089 \\
## A & 3.594127 & 3.731913 & 3.770253 & 3.473995 & 0.5175032 \\
## B & 3.720118 & 3.745884 & 4.232167 & 3.363610 & 0.4921472 \\
## I & 4.600000 & 4.321569 & 4.188235 & 3.996078 & 0.5661765 \\
## U & 4.083596 & 4.006712 & 4.237263 & 3.602571 & 0.4989524 \\
## W & 3.656360 & 3.676762 & 4.026096 & 3.251584 & 0.5267044 \\
## above\_34 & 3.320608 & 3.584982 & 4.205890 & 3.202959 & 0.4900435 \\
## below\_25 & 4.052978 & 3.847832 & 4.090316 & 3.505100 & 0.5190686 \\
## between\_25\_34 & 3.801396 & 3.783532 & 4.217054 & 3.325672 & 0.4984155 \\
## 0 & 3.643274 & 3.665749 & 4.209290 & 3.242405 & 0.4917898 \\
## 1 & 3.731389 & 3.753845 & 4.160694 & 3.369482 & 0.5052430 \\
## \bottomrule
## \end{longtable}
Table 1 - Relative feature importance
Table 1 V1 - R-sqrt & Partial R-sqrt.
| Feature |
R Squared |
Partial R Squared |
| Felony |
0.5396 |
0.6208 |
| Violent-Crime |
0.1772 |
0.3572 |
| Property-Crime |
0.0970 |
0.0991 |
| Race |
0.0690 |
0.2747 |
| Sex |
0.0676 |
0.1564 |
| Gun-Crime |
0.0198 |
0.0046 |
| Drug-Crime |
0.0036 |
0.0086 |
| Age |
0.0010 |
0.0183 |
Table 1 V2 - Dropout & Variance Decomposition for ML-Face
## [1] "Age"
## [1] "Sex"
## [1] "Race"
## [1] "Drug-Crime"
## [1] "Felony-Crime"
## [1] "Gun-Crime"
## [1] "Violent-Crime"
## [1] "Property-Crime"
## [1] "Face"
| Feature |
Var Difference |
Lower 95% CI |
Upper 95% CI |
| Face |
0.0042 |
0.0035 |
0.0048 |
| Violent-Crime |
0.0037 |
0.0032 |
0.0043 |
| Property-Crime |
0.0034 |
0.0028 |
0.0039 |
| Felony-Crime |
0.0032 |
0.0025 |
0.0040 |
| Drug-Crime |
0.0027 |
0.0021 |
0.0033 |
| Gun-Crime |
0.0027 |
0.0020 |
0.0032 |
| Race |
0.0007 |
0.0000 |
0.0013 |
| Age |
−0.0001 |
−0.0011 |
0.0009 |
| Sex |
−0.0005 |
−0.0012 |
0.0001 |
Table 1 V3 - Using OLS predictions on Val set for partial dropout variance
| Feature |
Var % Difference |
Lower 95% CI |
Upper 95% CI |
| Felony-Crime |
0.3758 |
0.2930 |
0.4357 |
| ML-Face |
0.1135 |
0.0055 |
0.1892 |
| Risk Prediction |
0.1069 |
−0.0003 |
0.1903 |
| Violent-Crime |
0.0889 |
−0.0129 |
0.1685 |
| Race |
0.0394 |
−0.0682 |
0.1324 |
| Drug-Crime |
0.0326 |
−0.0765 |
0.1151 |
| Age |
0.0080 |
−0.0973 |
0.0918 |
| Gun-Crime |
0.0039 |
−0.1021 |
0.0832 |
| Skin-Tone |
0.0036 |
−0.1066 |
0.0894 |
| Sex |
0.0019 |
−0.1065 |
0.0800 |
| Property-Crime |
0.0016 |
−0.1104 |
0.0858 |
Table 1 V4 - Permutation Test:
| Feature |
AUC Difference |
Lower 95% CI |
Upper 95% CI |
| ML-Face |
0.2243 |
0.2115 |
0.2290 |
| Violent-Crime |
0.1263 |
0.1147 |
0.1377 |
| Property-Crime |
0.1253 |
0.1138 |
0.1370 |
| Drug-Crime |
0.1243 |
0.1134 |
0.1367 |
| Gun-Crime |
0.1233 |
0.1119 |
0.1354 |
| Felony-Crime |
0.1033 |
0.0923 |
0.1143 |
| Race |
0.0083 |
−0.0023 |
0.0185 |
| Sex |
0.0013 |
−0.0088 |
0.0122 |
| Age |
0.0003 |
−0.0104 |
0.0101 |
| Feature |
Drop Out & Variance
|
Permutation & AUC
|
| Var % Difference |
Lower 95% CI |
Upper 95% CI |
AUC Difference |
Lower 95% CI |
Upper 95% CI |
| Felony-Crime |
0.3758 |
0.2930 |
0.4357 |
0.1033 |
0.0923 |
0.1143 |
| ML-Face |
0.1135 |
0.0055 |
0.1892 |
0.2243 |
0.2115 |
0.2290 |
| Violent-Crime |
0.0889 |
−0.0129 |
0.1685 |
0.1263 |
0.1147 |
0.1377 |
| Race |
0.0394 |
−0.0682 |
0.1324 |
0.0083 |
−0.0023 |
0.0185 |
| Drug-Crime |
0.0326 |
−0.0765 |
0.1151 |
0.1243 |
0.1134 |
0.1367 |
| Age |
0.0080 |
−0.0973 |
0.0918 |
0.0003 |
−0.0104 |
0.0101 |
| Gun-Crime |
0.0039 |
−0.1021 |
0.0832 |
0.1233 |
0.1119 |
0.1354 |
| Sex |
0.0019 |
−0.1065 |
0.0800 |
0.0013 |
−0.0088 |
0.0122 |
| Property-Crime |
0.0016 |
−0.1104 |
0.0858 |
0.1253 |
0.1138 |
0.1370 |
Table 2 - Release regressions with ML Fusion and ML Face
Table No.2 - Rediscovering Demographic Discrimination
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release-Final-Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
(6)
|
(7)
|
|
|
|
ML-Face Fusion
|
1.009***
|
|
|
|
|
|
|
|
|
(0.033)
|
|
|
|
|
|
|
|
ML-Face CNN
|
|
0.692***
|
0.652***
|
0.647***
|
0.541***
|
0.597***
|
0.522***
|
|
|
|
(0.040)
|
(0.045)
|
(0.045)
|
(0.045)
|
(0.043)
|
(0.043)
|
|
SexM
|
|
|
-0.029**
|
-0.028**
|
0.001
|
-0.009
|
0.019
|
|
|
|
|
(0.012)
|
(0.012)
|
(0.012)
|
(0.012)
|
(0.012)
|
|
Age
|
|
|
0.001
|
0.001
|
-0.0005
|
-0.001
|
-0.001***
|
|
|
|
|
(0.0004)
|
(0.0004)
|
(0.0004)
|
(0.0004)
|
(0.0004)
|
|
RaceB
|
|
|
-0.043
|
-0.025
|
0.030
|
0.004
|
0.046
|
|
|
|
|
(0.049)
|
(0.050)
|
(0.050)
|
(0.048)
|
(0.048)
|
|
Skin-tone
|
|
|
|
0.266**
|
0.267**
|
0.260**
|
0.268**
|
|
|
|
|
|
(0.132)
|
(0.131)
|
(0.127)
|
(0.126)
|
|
Risk Prediction
|
|
|
|
|
-0.677***
|
|
-0.624***
|
|
|
|
|
|
|
(0.048)
|
|
(0.054)
|
|
Felony-Dummie
|
|
|
|
|
|
-0.207***
|
-0.208***
|
|
|
|
|
|
|
|
(0.010)
|
(0.010)
|
|
Gun-Crime-Dummie
|
|
|
|
|
|
0.038**
|
0.038**
|
|
|
|
|
|
|
|
(0.017)
|
(0.017)
|
|
Drug-Crime-Dummie
|
|
|
|
|
|
0.039***
|
0.078***
|
|
|
|
|
|
|
|
(0.012)
|
(0.012)
|
|
Violent-Crime-Dummie
|
|
|
|
|
|
-0.160***
|
-0.161***
|
|
|
|
|
|
|
|
(0.015)
|
(0.015)
|
|
Property-Crime-Dummie
|
|
|
|
|
|
-0.042***
|
0.016
|
|
|
|
|
|
|
|
(0.010)
|
(0.011)
|
|
Constant
|
-0.009
|
0.245***
|
0.326***
|
0.300***
|
0.551***
|
0.447***
|
0.638***
|
|
|
(0.025)
|
(0.030)
|
(0.066)
|
(0.067)
|
(0.069)
|
(0.065)
|
(0.066)
|
|
|
|
ROC-AUC
|
0.708
|
0.622
|
0.623
|
0.624
|
0.662
|
0.72
|
0.736
|
|
Observations
|
8,821
|
8,821
|
8,821
|
8,821
|
8,821
|
8,821
|
8,821
|
|
Adjusted R2
|
0.098
|
0.032
|
0.033
|
0.033
|
0.054
|
0.111
|
0.124
|
|
F Statistic
|
958.772*** (df = 1; 8819)
|
296.642*** (df = 1; 8819)
|
43.944*** (df = 7; 8813)
|
38.969*** (df = 8; 8812)
|
57.268*** (df = 9; 8811)
|
85.787*** (df = 13; 8807)
|
90.560*** (df = 14; 8806)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
|
|
We encode skin-tone as a continuous variable increasing in brightness
|
Table 2.1 - ML-Face + Demographics + Risk
Table No.2.1 - Rediscovering Demographic Discrimination
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Judge Release Final Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
(6)
|
|
|
|
ML-Face CNN
|
0.692***
|
|
0.652***
|
0.562***
|
|
0.546***
|
|
|
(0.040)
|
|
(0.045)
|
(0.041)
|
|
(0.045)
|
|
Male
|
|
-0.106***
|
-0.029**
|
|
-0.059***
|
-0.001
|
|
|
|
(0.011)
|
(0.012)
|
|
(0.011)
|
(0.012)
|
|
Age
|
|
-0.00003
|
0.001
|
|
-0.001**
|
-0.0005
|
|
|
|
(0.0005)
|
(0.0004)
|
|
(0.0004)
|
(0.0004)
|
|
Black
|
|
-0.058
|
-0.043
|
|
0.008
|
0.012
|
|
|
|
(0.050)
|
(0.049)
|
|
(0.049)
|
(0.049)
|
|
Risk Prediction
|
|
|
|
-0.596***
|
-0.775***
|
-0.677***
|
|
|
|
|
|
(0.045)
|
(0.048)
|
(0.048)
|
|
Constant
|
0.245***
|
0.908***
|
0.326***
|
0.519***
|
1.087***
|
0.577***
|
|
|
(0.030)
|
(0.053)
|
(0.066)
|
(0.036)
|
(0.053)
|
(0.067)
|
|
|
|
ROC-AUC
|
0.622
|
0.55
|
0.623
|
0.655
|
0.637
|
0.661
|
|
Observations
|
8,821
|
8,821
|
8,821
|
8,821
|
8,821
|
8,821
|
|
Adjusted R2
|
0.032
|
0.010
|
0.033
|
0.051
|
0.038
|
0.054
|
|
F Statistic
|
296.642*** (df = 1; 8819)
|
15.843*** (df = 6; 8814)
|
43.944*** (df = 7; 8813)
|
238.904*** (df = 2; 8818)
|
51.194*** (df = 7; 8813)
|
63.886*** (df = 8; 8812)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
|
|
We encode skin-tone as a continuous variable increasing in brightness
|
Table 2.2 - ML-Face + Demographics + Skin-tone + Risk
Table No.2.2 - Adding skin-tone feature
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Judge Release Final Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
|
|
|
ML-Face CNN
|
0.652***
|
0.647***
|
0.546***
|
0.541***
|
|
|
(0.045)
|
(0.045)
|
(0.045)
|
(0.045)
|
|
SexM
|
-0.029**
|
-0.028**
|
-0.001
|
0.001
|
|
|
(0.012)
|
(0.012)
|
(0.012)
|
(0.012)
|
|
Age
|
0.001
|
0.001
|
-0.0005
|
-0.0005
|
|
|
(0.0004)
|
(0.0004)
|
(0.0004)
|
(0.0004)
|
|
RaceB
|
-0.043
|
-0.025
|
0.012
|
0.030
|
|
|
(0.049)
|
(0.050)
|
(0.049)
|
(0.050)
|
|
Skin-tone
|
|
0.266**
|
|
0.267**
|
|
|
|
(0.132)
|
|
(0.131)
|
|
Risk Prediction
|
|
|
-0.677***
|
-0.677***
|
|
|
|
|
(0.048)
|
(0.048)
|
|
Constant
|
0.326***
|
0.300***
|
0.577***
|
0.551***
|
|
|
(0.066)
|
(0.067)
|
(0.067)
|
(0.069)
|
|
|
|
ROC-AUC
|
0.623
|
0.624
|
0.661
|
0.662
|
|
Observations
|
8,821
|
8,821
|
8,821
|
8,821
|
|
Adjusted R2
|
0.033
|
0.033
|
0.054
|
0.054
|
|
F Statistic
|
43.944*** (df = 7; 8813)
|
38.969*** (df = 8; 8812)
|
63.886*** (df = 8; 8812)
|
57.268*** (df = 9; 8811)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
|
|
We encode skin-tone as a continuous variable increasing in brightness
|
Table 2.3 - ML-Face + Demographics + Skin-tone + Risk + Charge
Table No.2.3 - Adding charge dummies
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Judge Release Final Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
|
|
|
ML-Face CNN
|
0.647***
|
0.597***
|
0.541***
|
0.522***
|
|
|
(0.045)
|
(0.043)
|
(0.045)
|
(0.043)
|
|
SexM
|
-0.028**
|
-0.009
|
0.001
|
0.019
|
|
|
(0.012)
|
(0.012)
|
(0.012)
|
(0.012)
|
|
Age
|
0.001
|
-0.001
|
-0.0005
|
-0.001***
|
|
|
(0.0004)
|
(0.0004)
|
(0.0004)
|
(0.0004)
|
|
RaceB
|
-0.025
|
0.004
|
0.030
|
0.046
|
|
|
(0.050)
|
(0.048)
|
(0.050)
|
(0.048)
|
|
Skin-tone
|
0.266**
|
0.260**
|
0.267**
|
0.268**
|
|
|
(0.132)
|
(0.127)
|
(0.131)
|
(0.126)
|
|
Felony-Dummie
|
|
-0.207***
|
|
-0.208***
|
|
|
|
(0.010)
|
|
(0.010)
|
|
Gun-Crime-Dummie
|
|
0.038**
|
|
0.038**
|
|
|
|
(0.017)
|
|
(0.017)
|
|
Drug-Crime-Dummie
|
|
0.039***
|
|
0.078***
|
|
|
|
(0.012)
|
|
(0.012)
|
|
Violent-Crime-Dummie
|
|
-0.160***
|
|
-0.161***
|
|
|
|
(0.015)
|
|
(0.015)
|
|
Property-Crime-Dummie
|
|
-0.042***
|
|
0.016
|
|
|
|
(0.010)
|
|
(0.011)
|
|
Risk Prediction
|
|
|
-0.677***
|
-0.624***
|
|
|
|
|
(0.048)
|
(0.054)
|
|
Constant
|
0.300***
|
0.447***
|
0.551***
|
0.638***
|
|
|
(0.067)
|
(0.065)
|
(0.069)
|
(0.066)
|
|
|
|
ROC-AUC
|
0.624
|
0.72
|
0.662
|
0.736
|
|
Observations
|
8,821
|
8,821
|
8,821
|
8,821
|
|
Adjusted R2
|
0.033
|
0.111
|
0.054
|
0.124
|
|
F Statistic
|
38.969*** (df = 8; 8812)
|
85.787*** (df = 13; 8807)
|
57.268*** (df = 9; 8811)
|
90.560*** (df = 14; 8806)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
|
|
We encode skin-tone as a continuous variable increasing in brightness
|
Table 3 - Release regressions with ML Face and Psych Features
Table No.3 - is Model Rediscovering Psychological Features
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release-Final-Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
(6)
|
(7)
|
(8)
|
|
|
|
Attractiveness
|
0.004
|
|
-0.001
|
0.002
|
|
0.004
|
|
0.003
|
|
|
(0.006)
|
|
(0.005)
|
(0.006)
|
|
(0.006)
|
|
(0.006)
|
|
Competence
|
0.004
|
|
0.0004
|
0.005
|
|
0.004
|
|
-0.001
|
|
|
(0.006)
|
|
(0.006)
|
(0.006)
|
|
(0.006)
|
|
(0.006)
|
|
Dominance
|
-0.012***
|
|
-0.004
|
-0.007
|
|
-0.012***
|
|
-0.003
|
|
|
(0.004)
|
|
(0.004)
|
(0.004)
|
|
(0.004)
|
|
(0.004)
|
|
Trustworthiness
|
0.019***
|
|
0.015***
|
0.018***
|
|
0.019***
|
|
0.009*
|
|
|
(0.006)
|
|
(0.006)
|
(0.006)
|
|
(0.006)
|
|
(0.006)
|
|
ML-Face CNN
|
|
0.696***
|
0.677***
|
|
|
|
0.694***
|
0.510***
|
|
|
|
(0.040)
|
(0.041)
|
|
|
|
(0.040)
|
(0.044)
|
|
Male
|
|
|
|
-0.099***
|
|
|
|
0.019
|
|
|
|
|
|
(0.011)
|
|
|
|
(0.012)
|
|
Age
|
|
|
|
0.0004
|
|
|
|
-0.001***
|
|
|
|
|
|
(0.0005)
|
|
|
|
(0.0005)
|
|
Black
|
|
|
|
-0.022
|
|
|
|
0.059
|
|
|
|
|
|
(0.051)
|
|
|
|
(0.048)
|
|
Skin-tone
|
|
|
|
0.371***
|
|
|
|
0.277**
|
|
|
|
|
|
(0.134)
|
|
|
|
(0.126)
|
|
Risk Prediction
|
|
|
|
|
|
|
|
-0.629***
|
|
|
|
|
|
|
|
|
|
(0.054)
|
|
Felony-Dummie
|
|
|
|
|
|
|
|
-0.207***
|
|
|
|
|
|
|
|
|
|
(0.010)
|
|
Gun-Crime-Dummie
|
|
|
|
|
|
|
|
0.039**
|
|
|
|
|
|
|
|
|
|
(0.017)
|
|
Drug-Crime-Dummie
|
|
|
|
|
|
|
|
0.079***
|
|
|
|
|
|
|
|
|
|
(0.012)
|
|
Violent-Crime-Dummie
|
|
|
|
|
|
|
|
-0.165***
|
|
|
|
|
|
|
|
|
|
(0.015)
|
|
Property-Crime-Dummie
|
|
|
|
|
|
|
|
0.017
|
|
|
|
|
|
|
|
|
|
(0.011)
|
|
Human Guess
|
|
|
|
|
0.030**
|
0.024
|
0.013
|
0.013
|
|
|
|
|
|
|
(0.015)
|
(0.015)
|
(0.015)
|
(0.014)
|
|
Constant
|
0.718***
|
0.243***
|
0.228***
|
0.782***
|
0.747***
|
0.706***
|
0.238***
|
0.598***
|
|
|
(0.023)
|
(0.030)
|
(0.037)
|
(0.060)
|
(0.009)
|
(0.024)
|
(0.031)
|
(0.070)
|
|
|
|
ROC-AUC
|
0.542
|
0.623
|
0.626
|
0.576
|
0.515
|
0.544
|
0.624
|
0.739
|
|
Observations
|
8,722
|
8,722
|
8,722
|
8,722
|
8,722
|
8,722
|
8,722
|
8,722
|
|
Adjusted R2
|
0.004
|
0.033
|
0.034
|
0.014
|
0.0003
|
0.004
|
0.033
|
0.126
|
|
F Statistic
|
9.036*** (df = 4; 8717)
|
297.870*** (df = 1; 8720)
|
62.075*** (df = 5; 8716)
|
11.912*** (df = 11; 8710)
|
4.008** (df = 1; 8720)
|
7.751*** (df = 5; 8716)
|
149.318*** (df = 2; 8719)
|
67.422*** (df = 19; 8702)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
|
|
We encode skin-tone as a continuous variable increasing in brightness
|
Table 3.1 - Release regressions with ML Face and Psych Features
Table No.3 - is Model Rediscovering Psychological Features
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Judge Release Final Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
(6)
|
(7)
|
(8)
|
|
|
|
ML-Face CNN
|
0.696***
|
|
|
0.632***
|
0.538***
|
|
|
0.511***
|
|
|
(0.040)
|
|
|
(0.046)
|
(0.040)
|
|
|
(0.044)
|
|
Attractiveness
|
|
0.004
|
0.002
|
0.001
|
|
0.011**
|
0.004
|
0.003
|
|
|
|
(0.006)
|
(0.006)
|
(0.006)
|
|
(0.005)
|
(0.006)
|
(0.006)
|
|
Competence
|
|
0.004
|
0.005
|
0.0004
|
|
0.0003
|
0.003
|
-0.001
|
|
|
|
(0.006)
|
(0.006)
|
(0.006)
|
|
(0.006)
|
(0.006)
|
(0.006)
|
|
Dominance
|
|
-0.012***
|
-0.007
|
-0.004
|
|
-0.007
|
-0.005
|
-0.003
|
|
|
|
(0.004)
|
(0.004)
|
(0.004)
|
|
(0.004)
|
(0.004)
|
(0.004)
|
|
Trustworthiness
|
|
0.019***
|
0.018***
|
0.014**
|
|
0.013**
|
0.012**
|
0.009*
|
|
|
|
(0.006)
|
(0.006)
|
(0.006)
|
|
(0.006)
|
(0.006)
|
(0.006)
|
|
Male
|
|
|
-0.099***
|
-0.027**
|
|
|
-0.034***
|
0.019
|
|
|
|
|
(0.011)
|
(0.012)
|
|
|
(0.011)
|
(0.012)
|
|
Age
|
|
|
0.0004
|
0.001*
|
|
|
-0.002***
|
-0.001***
|
|
|
|
|
(0.0005)
|
(0.0005)
|
|
|
(0.0005)
|
(0.0005)
|
|
Black
|
|
|
-0.022
|
-0.016
|
|
|
0.061
|
0.058
|
|
|
|
|
(0.051)
|
(0.051)
|
|
|
(0.049)
|
(0.048)
|
|
Skin-tone
|
|
|
0.371***
|
0.276**
|
|
|
0.355***
|
0.280**
|
|
|
|
|
(0.134)
|
(0.133)
|
|
|
(0.127)
|
(0.126)
|
|
Risk Prediction
|
|
|
|
|
-0.480***
|
-0.631***
|
-0.720***
|
-0.629***
|
|
|
|
|
|
|
(0.050)
|
(0.049)
|
(0.054)
|
(0.054)
|
|
Felony-Dummie
|
|
|
|
|
-0.203***
|
-0.206***
|
-0.207***
|
-0.207***
|
|
|
|
|
|
|
(0.010)
|
(0.010)
|
(0.010)
|
(0.010)
|
|
Gun-Crime-Dummie
|
|
|
|
|
0.051***
|
0.049***
|
0.042**
|
0.039**
|
|
|
|
|
|
|
(0.017)
|
(0.017)
|
(0.017)
|
(0.017)
|
|
Drug-Crime-Dummie
|
|
|
|
|
0.069***
|
0.073***
|
0.078***
|
0.079***
|
|
|
|
|
|
|
(0.012)
|
(0.012)
|
(0.012)
|
(0.012)
|
|
Violent-Crime-Dummie
|
|
|
|
|
-0.157***
|
-0.162***
|
-0.172***
|
-0.165***
|
|
|
|
|
|
|
(0.015)
|
(0.015)
|
(0.015)
|
(0.015)
|
|
Property-Crime-Dummie
|
|
|
|
|
0.007
|
0.016
|
0.019
|
0.017
|
|
|
|
|
|
|
(0.011)
|
(0.011)
|
(0.011)
|
(0.011)
|
|
Constant
|
0.243***
|
0.718***
|
0.782***
|
0.257***
|
0.586***
|
0.973***
|
1.052***
|
0.604***
|
|
|
(0.030)
|
(0.023)
|
(0.060)
|
(0.071)
|
(0.036)
|
(0.025)
|
(0.059)
|
(0.070)
|
|
|
|
ROC-AUC
|
0.623
|
0.542
|
0.576
|
0.628
|
0.73
|
0.713
|
0.725
|
0.739
|
|
Observations
|
8,722
|
8,722
|
8,722
|
8,722
|
8,722
|
8,722
|
8,722
|
8,722
|
|
Adjusted R2
|
0.033
|
0.004
|
0.014
|
0.035
|
0.120
|
0.104
|
0.113
|
0.126
|
|
F Statistic
|
297.870*** (df = 1; 8720)
|
9.036*** (df = 4; 8717)
|
11.912*** (df = 11; 8710)
|
27.225*** (df = 12; 8709)
|
170.599*** (df = 7; 8714)
|
102.119*** (df = 10; 8711)
|
66.334*** (df = 17; 8704)
|
71.122*** (df = 18; 8703)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
|
|
We encode skin-tone as a continuous variable increasing in brightness
|
Table 3.2 - Release regressions with ML Face and Psych Features
Table No.3 - Is the Model Rediscovering Psychological Features
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Judge Release Final Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
|
|
ML-Face CNN
|
|
|
0.694***
|
0.511***
|
0.510***
|
|
|
|
|
(0.040)
|
(0.044)
|
(0.044)
|
|
Human Guess
|
0.030**
|
0.024
|
0.013
|
|
0.013
|
|
|
(0.015)
|
(0.015)
|
(0.015)
|
|
(0.014)
|
|
Male
|
|
|
|
0.019
|
0.019
|
|
|
|
|
|
(0.012)
|
(0.012)
|
|
Age
|
|
|
|
-0.001***
|
-0.001***
|
|
|
|
|
|
(0.0005)
|
(0.0005)
|
|
Black
|
|
|
|
0.058
|
0.059
|
|
|
|
|
|
(0.048)
|
(0.048)
|
|
Skin-tone
|
|
|
|
0.280**
|
0.277**
|
|
|
|
|
|
(0.126)
|
(0.126)
|
|
Risk Prediction
|
|
|
|
-0.629***
|
-0.629***
|
|
|
|
|
|
(0.054)
|
(0.054)
|
|
Felony-Dummie
|
|
|
|
-0.207***
|
-0.207***
|
|
|
|
|
|
(0.010)
|
(0.010)
|
|
Gun-Crime-Dummie
|
|
|
|
0.039**
|
0.039**
|
|
|
|
|
|
(0.017)
|
(0.017)
|
|
Drug-Crime-Dummie
|
|
|
|
0.079***
|
0.079***
|
|
|
|
|
|
(0.012)
|
(0.012)
|
|
Violent-Crime-Dummie
|
|
|
|
-0.165***
|
-0.165***
|
|
|
|
|
|
(0.015)
|
(0.015)
|
|
Property-Crime-Dummie
|
|
|
|
0.017
|
0.017
|
|
|
|
|
|
(0.011)
|
(0.011)
|
|
Attractiveness
|
|
0.004
|
|
0.003
|
0.003
|
|
|
|
(0.006)
|
|
(0.006)
|
(0.006)
|
|
Competence
|
|
0.004
|
|
-0.001
|
-0.001
|
|
|
|
(0.006)
|
|
(0.006)
|
(0.006)
|
|
Dominance
|
|
-0.012***
|
|
-0.003
|
-0.003
|
|
|
|
(0.004)
|
|
(0.004)
|
(0.004)
|
|
Trustworthiness
|
|
0.019***
|
|
0.009*
|
0.009*
|
|
|
|
(0.006)
|
|
(0.006)
|
(0.006)
|
|
Constant
|
0.747***
|
0.706***
|
0.238***
|
0.604***
|
0.598***
|
|
|
(0.009)
|
(0.024)
|
(0.031)
|
(0.070)
|
(0.070)
|
|
|
|
ROC-AUC
|
0.515
|
0.544
|
0.624
|
0.739
|
0.739
|
|
Observations
|
8,722
|
8,722
|
8,722
|
8,722
|
8,722
|
|
Adjusted R2
|
0.0003
|
0.004
|
0.033
|
0.126
|
0.126
|
|
F Statistic
|
4.008** (df = 1; 8720)
|
7.751*** (df = 5; 8716)
|
149.318*** (df = 2; 8719)
|
71.122*** (df = 18; 8703)
|
67.422*** (df = 19; 8702)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
|
|
We encode skin-tone as a continuous variable increasing in brightness
|
Table 4 - Correlates with ML-Face Predictions
Correlates with ML-Face
|
|
|
|
Dependent variable:
|
|
|
|
|
|
ML-Face Prediction
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
(6)
|
|
|
|
Male
|
-0.115***
|
|
-0.114***
|
|
-0.117***
|
-0.116***
|
|
|
(0.003)
|
|
(0.003)
|
|
(0.003)
|
(0.003)
|
|
Age
|
-0.001***
|
|
-0.001***
|
|
-0.0005***
|
-0.0005***
|
|
|
(0.0001)
|
|
(0.0001)
|
|
(0.0001)
|
(0.0001)
|
|
Black
|
-0.013
|
|
-0.011
|
|
-0.007
|
-0.006
|
|
|
(0.012)
|
|
(0.012)
|
|
(0.012)
|
(0.012)
|
|
Skin-tone
|
0.163***
|
|
0.153***
|
|
0.167***
|
0.165***
|
|
|
(0.031)
|
|
(0.031)
|
|
(0.031)
|
(0.031)
|
|
Attractiveness
|
|
0.007***
|
0.001
|
|
|
-0.003*
|
|
|
|
(0.001)
|
(0.001)
|
|
|
(0.001)
|
|
Competence
|
|
0.005***
|
0.007***
|
|
|
0.005***
|
|
|
|
(0.002)
|
(0.001)
|
|
|
(0.001)
|
|
Dominance
|
|
-0.011***
|
-0.004***
|
|
|
-0.004***
|
|
|
|
(0.001)
|
(0.001)
|
|
|
(0.001)
|
|
Trustworthiness
|
|
0.006***
|
0.005***
|
|
|
0.003**
|
|
|
|
(0.002)
|
(0.001)
|
|
|
(0.001)
|
|
Well-Groomed
|
|
|
|
0.016***
|
0.017***
|
0.016***
|
|
|
|
|
|
(0.001)
|
(0.001)
|
(0.001)
|
|
Constant
|
0.874***
|
0.725***
|
0.832***
|
0.667***
|
0.772***
|
0.773***
|
|
|
(0.013)
|
(0.006)
|
(0.014)
|
(0.005)
|
(0.014)
|
(0.014)
|
|
|
|
Observations
|
8,821
|
8,821
|
8,821
|
8,821
|
8,821
|
8,821
|
|
Adjusted R2
|
0.204
|
0.028
|
0.214
|
0.025
|
0.229
|
0.232
|
|
F Statistic
|
323.060*** (df = 7; 8813)
|
65.473*** (df = 4; 8816)
|
219.821*** (df = 11; 8809)
|
229.145*** (df = 1; 8819)
|
328.819*** (df = 8; 8812)
|
223.109*** (df = 12; 8808)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Table 5 - Well Groomed Predicting Judge Decision
Table No.5 - Does Well-Groomed Predict Judge Decisions ?
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release-Final-Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
|
|
|
Well-Groomed
|
0.019***
|
0.015***
|
0.012***
|
0.004
|
|
|
(0.004)
|
(0.004)
|
(0.005)
|
(0.005)
|
|
Male
|
|
-0.038***
|
-0.035***
|
0.018
|
|
|
|
(0.011)
|
(0.011)
|
(0.012)
|
|
Age
|
|
-0.002***
|
-0.001***
|
-0.001**
|
|
|
|
(0.0004)
|
(0.0005)
|
(0.0005)
|
|
Black
|
|
0.051
|
0.053
|
0.049
|
|
|
|
(0.048)
|
(0.048)
|
(0.048)
|
|
Risk Prediction
|
|
-0.706***
|
-0.702***
|
-0.618***
|
|
|
|
(0.053)
|
(0.053)
|
(0.054)
|
|
Skin-tone
|
|
0.355***
|
0.349***
|
0.269**
|
|
|
|
(0.127)
|
(0.127)
|
(0.126)
|
|
Felony-Dummie
|
|
-0.208***
|
-0.207***
|
-0.208***
|
|
|
|
(0.010)
|
(0.010)
|
(0.010)
|
|
Gun-Crime-Dummie
|
|
0.041**
|
0.041**
|
0.038**
|
|
|
|
(0.017)
|
(0.017)
|
(0.017)
|
|
Drug-Crime-Dummie
|
|
0.078***
|
0.079***
|
0.079***
|
|
|
|
(0.012)
|
(0.012)
|
(0.012)
|
|
Violent-Crime-Dummie
|
|
-0.167***
|
-0.167***
|
-0.161***
|
|
|
|
(0.015)
|
(0.015)
|
(0.015)
|
|
Property-Crime-Dummie
|
|
0.017
|
0.017
|
0.016
|
|
|
|
(0.011)
|
(0.011)
|
(0.011)
|
|
Attractiveness
|
|
|
0.001
|
0.002
|
|
|
|
|
(0.006)
|
(0.006)
|
|
Competence
|
|
|
0.001
|
-0.001
|
|
|
|
|
(0.006)
|
(0.006)
|
|
Dominance
|
|
|
-0.005
|
-0.003
|
|
|
|
|
(0.004)
|
(0.004)
|
|
Trustworthiness
|
|
|
0.010*
|
0.009
|
|
|
|
|
(0.006)
|
(0.006)
|
|
ML-Face CNN
|
|
|
|
0.504***
|
|
|
|
|
|
(0.044)
|
|
Constant
|
0.670***
|
1.021***
|
1.007***
|
0.594***
|
|
|
(0.021)
|
(0.059)
|
(0.061)
|
(0.070)
|
|
|
|
ROC-AUC
|
0.531
|
0.723
|
0.724
|
0.737
|
|
Observations
|
8,821
|
8,821
|
8,821
|
8,821
|
|
Adjusted R2
|
0.002
|
0.112
|
0.112
|
0.125
|
|
F Statistic
|
20.197*** (df = 1; 8819)
|
80.123*** (df = 14; 8806)
|
62.793*** (df = 18; 8802)
|
67.206*** (df = 19; 8801)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
|
|
We encode skin-tone as a continuous variable increasing in brightness
|
Other Tables:
(A) ML Fusion and Risk Prediction
ML-Fusion and Risk-predictions
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Final Judge Release Decision
|
|
|
(1)
|
(2)
|
(3)
|
|
|
|
ML-Fusion
|
1.009***
|
|
0.928***
|
|
|
(0.033)
|
|
(0.033)
|
|
Risk Prediction
|
|
-0.743***
|
-0.467***
|
|
|
|
(0.044)
|
(0.043)
|
|
Constant
|
-0.009
|
0.983***
|
0.193***
|
|
|
(0.025)
|
(0.014)
|
(0.031)
|
|
|
|
ROC-AUC
|
0.708
|
0.624
|
0.722
|
|
Observations
|
8,821
|
8,821
|
8,821
|
|
Adjusted R2
|
0.098
|
0.031
|
0.110
|
|
F Statistic
|
958.772*** (df = 1; 8819)
|
283.490*** (df = 1; 8819)
|
543.372*** (df = 2; 8818)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
|
|
We encode skin-tone as a continuous variable increasing in brightness
|
(B) - ML Fusion. ML Face, and Risk Prediction
ML-Fusion and ML-Face
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release-Final-Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
|
|
|
ML-Fusion
|
1.009***
|
|
0.928***
|
|
|
|
(0.033)
|
|
(0.033)
|
|
|
ML-Face
|
|
0.692***
|
|
0.562***
|
|
|
|
(0.040)
|
|
(0.041)
|
|
Risk Prediction
|
|
|
-0.467***
|
-0.596***
|
|
|
|
|
(0.043)
|
(0.045)
|
|
Constant
|
-0.009
|
0.245***
|
0.193***
|
0.519***
|
|
|
(0.025)
|
(0.030)
|
(0.031)
|
(0.036)
|
|
|
|
ROC-AUC
|
0.708
|
0.622
|
0.722
|
0.655
|
|
Observations
|
8,821
|
8,821
|
8,821
|
8,821
|
|
Adjusted R2
|
0.098
|
0.032
|
0.110
|
0.051
|
|
F Statistic
|
958.772*** (df = 1; 8819)
|
296.642*** (df = 1; 8819)
|
543.372*** (df = 2; 8818)
|
238.904*** (df = 2; 8818)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
(C) New Table (B)
ML-Fusion, ML-Face, and Risk Predictions
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release-Final-Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
|
|
ML-Fusion
|
1.009***
|
|
0.928***
|
|
|
|
|
(0.033)
|
|
(0.033)
|
|
|
|
Risk Prediction
|
|
-0.743***
|
-0.467***
|
|
-0.596***
|
|
|
|
(0.044)
|
(0.043)
|
|
(0.045)
|
|
ML-Face
|
|
|
|
0.692***
|
0.562***
|
|
|
|
|
|
(0.040)
|
(0.041)
|
|
Constant
|
-0.009
|
0.983***
|
0.193***
|
0.245***
|
0.519***
|
|
|
(0.025)
|
(0.014)
|
(0.031)
|
(0.030)
|
(0.036)
|
|
|
|
ROC-AUC
|
0.708
|
0.624
|
0.722
|
0.622
|
0.655
|
|
Observations
|
8,821
|
8,821
|
8,821
|
8,821
|
8,821
|
|
Adjusted R2
|
0.098
|
0.031
|
0.110
|
0.032
|
0.051
|
|
F Statistic
|
958.772*** (df = 1; 8819)
|
283.490*** (df = 1; 8819)
|
543.372*** (df = 2; 8818)
|
296.642*** (df = 1; 8819)
|
238.904*** (df = 2; 8818)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|