Exclusion on squared meters

Note below that we start excluding the group of stated surface area of home office, once it is above 100 Squared meters.

The effect of ventilation group on outcome metrics

In this part, we split our sample according to the distribution of the ventilation rate during the day. Note that we ask participants to rate the percentage of time they ventilate (either mechanical or physical) during the whole day. 100% equals the full day, 0% means not at all during the day.

Descriptives by Ventilation

Below you find the total descriptives and simple tests (categorical or nonparametric). We find income not to have an effect, but surface space does. Below we see a mean plot from which we can identify a fairly linear relationship between ventilation group and average surface. However, the differences in distribution are not abundantly clear.

Summary Statistics of WfH Per Ventilation Group
Low Ventilation (N=320) Medium Ventilation (N=346) High Ventilation (N=336) Total (N=1002) p value
Percentage of Ventilation per day < 0.001 (1)
- Mean (SD) 5.853 (4.167) 34.725 (12.805) 89.851 (12.974) 43.990 (36.318)
- Median (Q1, Q3) 5.000 (1.000, 10.000) 30.000 (25.000, 50.000) 100.000 (80.000, 100.000) 30.000 (10.000, 80.000)
- Min - Max 0.000 - 10.000 15.000 - 50.000 60.000 - 100.000 0.000 - 100.000
Job fit for WfH 0.173 (1)
- Mean (SD) 7.616 (2.213) 7.494 (2.419) 7.679 (2.514) 7.595 (2.387)
- Median (Q1, Q3) 8.000 (7.000, 9.000) 8.000 (7.000, 9.000) 8.000 (7.000, 10.000) 8.000 (7.000, 10.000)
- Min - Max 1.000 - 10.000 1.000 - 10.000 1.000 - 10.000 1.000 - 10.000
Kids at Home 0.159 (2)
- Always 15 (4.7%) 10 (2.9%) 8 (2.4%) 33 (3.3%)
- Sometimes 95 (29.7%) 128 (37.0%) 110 (32.7%) 333 (33.2%)
- Never 43 (13.4%) 52 (15.0%) 59 (17.6%) 154 (15.4%)
- No Kids 167 (52.2%) 156 (45.1%) 159 (47.3%) 482 (48.1%)
- N-Miss 0 0 0 0
Willingness to continue WfH < 0.001 (1)
- Mean (SD) 5.797 (2.949) 6.136 (2.930) 6.792 (2.843) 6.248 (2.933)
- Median (Q1, Q3) 6.500 (3.000, 8.000) 7.000 (3.000, 8.000) 7.000 (5.000, 9.000) 7.000 (4.000, 9.000)
- Min - Max 1.000 - 10.000 1.000 - 10.000 1.000 - 10.000 1.000 - 10.000
WfH experience 0.245 (2)
- No 89 (46.1%) 95 (43.8%) 113 (51.6%) 297 (47.2%)
- Yes 104 (53.9%) 122 (56.2%) 106 (48.4%) 332 (52.8%)
- N-Miss 127 129 117 373
Gender 0.097 (2)
- Male 171 (53.4%) 204 (59.0%) 207 (61.6%) 582 (58.1%)
- Female 149 (46.6%) 142 (41.0%) 129 (38.4%) 420 (41.9%)
- N-Miss 0 0 0 0
opleiding 0.083 (1)
- Mean (SD) 7.416 (2.859) 7.101 (2.870) 6.914 (2.816) 7.139 (2.853)
- Median (Q1, Q3) 7.000 (5.000, 11.000) 7.000 (4.000, 11.000) 7.000 (4.000, 10.000) 7.000 (4.000, 11.000)
- Min - Max 2.000 - 11.000 2.000 - 11.000 2.000 - 11.000 2.000 - 11.000
Age 0.351 (1)
- Mean (SD) 43.144 (12.228) 44.029 (13.235) 44.464 (12.087) 43.892 (12.539)
- Median (Q1, Q3) 44.000 (32.000, 53.000) 44.000 (32.000, 56.000) 45.000 (34.000, 54.000) 44.000 (33.000, 54.000)
- Min - Max 20.000 - 67.000 19.000 - 67.000 20.000 - 68.000 19.000 - 68.000
Inkomen 0.290 (1)
- Mean (SD) 3.972 (1.307) 4.064 (1.268) 4.134 (1.264) 4.058 (1.279)
- Median (Q1, Q3) 4.000 (3.000, 5.000) 4.000 (3.000, 5.000) 4.000 (3.000, 5.000) 4.000 (3.000, 5.000)
- Min - Max 1.000 - 6.000 1.000 - 6.000 1.000 - 6.000 1.000 - 6.000
Thuiskantoor m2 0.004 (1)
- Mean (SD) 23.139 (15.961) 24.663 (17.213) 27.545 (18.644) 25.137 (17.400)
- Median (Q1, Q3) 20.000 (11.625, 32.000) 20.000 (12.000, 35.000) 24.000 (12.438, 36.000) 20.000 (12.000, 35.000)
- Min - Max 3.000 - 90.000 4.000 - 90.000 2.000 - 98.000 2.000 - 98.000
- Missing 12 18 16 46
Materieel ondersteuning 0.355 (1)
- Mean (SD) 3.587 (1.434) 3.737 (1.370) 3.673 (1.522) 3.668 (1.442)
- Median (Q1, Q3) 4.000 (3.000, 5.000) 4.000 (3.000, 5.000) 4.000 (2.000, 5.000) 4.000 (3.000, 5.000)
- Min - Max 1.000 - 6.000 1.000 - 6.000 1.000 - 6.000 1.000 - 6.000
Tgenemoet onkosten 0.426 (1)
- Mean (SD) 2.944 (1.764) 3.081 (1.692) 2.958 (1.750) 2.996 (1.734)
- Median (Q1, Q3) 3.000 (1.000, 4.000) 3.000 (1.000, 4.750) 3.000 (1.000, 4.000) 3.000 (1.000, 4.000)
- Min - Max 1.000 - 6.000 1.000 - 6.000 1.000 - 6.000 1.000 - 6.000
Immaterieel counseling e.d. 0.077 (1)
- Mean (SD) 3.059 (1.464) 3.301 (1.433) 3.253 (1.510) 3.208 (1.471)
- Median (Q1, Q3) 3.000 (2.000, 4.000) 3.000 (2.000, 4.000) 3.000 (2.000, 4.000) 3.000 (2.000, 4.000)
- Min - Max 1.000 - 6.000 1.000 - 6.000 1.000 - 6.000 1.000 - 6.000
vrijheid voor eigen planning 0.313 (1)
- Mean (SD) 3.819 (1.378) 3.887 (1.284) 3.988 (1.316) 3.899 (1.326)
- Median (Q1, Q3) 4.000 (3.000, 5.000) 4.000 (3.000, 5.000) 4.000 (3.000, 5.000) 4.000 (3.000, 5.000)
- Min - Max 1.000 - 6.000 1.000 - 6.000 1.000 - 6.000 1.000 - 6.000
  1. Kruskal-Wallis rank sum test
  2. Pearson’s Chi-squared test

Kruskal-Wallis rank sum test

data: clean\(surface by clean\)x Kruskal-Wallis chi-squared = 11.104, df = 2, p-value = 0.00388

Warning: Removed 484 rows containing non-finite values (stat_bin).

Correlations between independent and dependent variabeles.

Split the correlations by ventilation group

Two Way Manova’s

CBE at Home

We see that both ventilation as well as surface ar significant models, but no interaction (no interaction throughout). CBE1 to CBE4 translates to temperature, air, light and noise. Hence, both surface and ventilation are leading for Temperature, Air and Light, not noise.

[1] "General Manova Model - CBE at home"
             Df  Pillai approx F num Df den Df    Pr(>F)    
(Intercept)   1 0.97075   7858.3      4    947 < 2.2e-16 ***
x             2 0.07812      9.6      8   1896 3.641e-13 ***
surface       1 0.02400      5.8      4    947 0.0001248 ***
x:surface     2 0.00967      1.2      8   1896 0.3254504    
Residuals   950                                             
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] "simple effects"
 Response CBE_H1 :
             Df  Sum Sq Mean Sq    F value    Pr(>F)    
(Intercept)   1 25074.1 25074.1 16081.5191 < 2.2e-16 ***
x             2    42.1    21.0    13.4969 1.660e-06 ***
surface       1    28.2    28.2    18.0996 2.304e-05 ***
x:surface     2     0.4     0.2     0.1248    0.8827    
Residuals   950  1481.2     1.6                         
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Response CBE_H2 :
             Df  Sum Sq Mean Sq    F value    Pr(>F)    
(Intercept)   1 27959.1 27959.1 23911.0730 < 2.2e-16 ***
x             2    74.0    37.0    31.6436 4.963e-14 ***
surface       1     9.7     9.7     8.3181  0.004014 ** 
x:surface     2     4.3     2.2     1.8565  0.156781    
Residuals   950  1110.8     1.2                         
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Response CBE_H3 :
             Df  Sum Sq Mean Sq    F value    Pr(>F)    
(Intercept)   1 27453.1 27453.1 19889.3108 < 2.2e-16 ***
x             2    69.7    34.8    25.2326 2.103e-11 ***
surface       1    19.7    19.7    14.2981 0.0001658 ***
x:surface     2     7.3     3.6     2.6321 0.0724539 .  
Residuals   950  1311.3     1.4                         
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Response CBE_H4 :
             Df  Sum Sq Mean Sq    F value    Pr(>F)    
(Intercept)   1 27463.8 27463.8 16205.6849 < 2.2e-16 ***
x             2    48.8    24.4    14.3903 6.969e-07 ***
surface       1     1.4     1.4     0.8257    0.3638    
x:surface     2     2.1     1.0     0.6132    0.5418    
Residuals   950  1610.0     1.7                         
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

484 observations deleted due to missingness

CBE at Work

We see that both ventilation as well as surface are insignificant models. Mild interaction at noise at work (multiple testing correction maybe)

[1] "General Manova Model - CBE at work"
             Df  Pillai approx F num Df den Df  Pr(>F)    
(Intercept)   1 0.95686   5250.7      4    947 < 2e-16 ***
x             2 0.00387      0.5      8   1896 0.88455    
surface       1 0.00045      0.1      4    947 0.98053    
x:surface     2 0.01411      1.7      8   1896 0.09749 .  
Residuals   950                                           
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] "simple effects"
 Response CBE_W1 :
             Df  Sum Sq Mean Sq    F value Pr(>F)    
(Intercept)   1 20076.5 20076.5 13030.6996 <2e-16 ***
x             2     2.9     1.5     0.9524 0.3862    
surface       1     0.6     0.6     0.3839 0.5357    
x:surface     2     3.3     1.6     1.0615 0.3463    
Residuals   950  1463.7     1.5                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Response CBE_W2 :
             Df  Sum Sq Mean Sq    F value Pr(>F)    
(Intercept)   1 20287.9 20287.9 12567.4019 <2e-16 ***
x             2     1.5     0.7     0.4611 0.6307    
surface       1     0.3     0.3     0.1604 0.6889    
x:surface     2     0.8     0.4     0.2354 0.7903    
Residuals   950  1533.6     1.6                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Response CBE_W3 :
             Df  Sum Sq Mean Sq    F value Pr(>F)    
(Intercept)   1 24473.4 24473.4 14504.7062 <2e-16 ***
x             2     0.9     0.4     0.2587 0.7721    
surface       1     0.1     0.1     0.0772 0.7812    
x:surface     2     1.7     0.8     0.5005 0.6064    
Residuals   950  1602.9     1.7                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Response CBE_W4 :
             Df  Sum Sq Mean Sq    F value    Pr(>F)    
(Intercept)   1 20426.3 20426.3 11398.3472 < 2.2e-16 ***
x             2     4.3     2.1     1.1918  0.304123    
surface       1     0.4     0.4     0.2090  0.647665    
x:surface     2    17.6     8.8     4.9091  0.007567 ** 
Residuals   950  1702.4     1.8                         
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

484 observations deleted due to missingness

HWC at Home

For these levels of satisfaction, only ventilation matters: surface is only mildy significant for chair satisfaction (other categories are desk (1), Screen(3), hardware, and wifi). WIfi shows a light interaction satisfaction.

[1] "General Manova Model - HWC at home"
             Df  Pillai approx F num Df den Df    Pr(>F)    
(Intercept)   1 0.95631   4140.9      5    946 < 2.2e-16 ***
x             2 0.07622      7.5     10   1894 8.346e-12 ***
surface       1 0.00860      1.6      5    946    0.1463    
x:surface     2 0.01708      1.6     10   1894    0.0919 .  
Residuals   950                                             
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] "simple effects"
 Response HWC_H1 :
             Df  Sum Sq Mean Sq   F value    Pr(>F)    
(Intercept)   1 18469.5 18469.5 8065.2146 < 2.2e-16 ***
x             2    89.3    44.6   19.4967 5.033e-09 ***
surface       1    12.6    12.6    5.4867   0.01937 *  
x:surface     2     5.2     2.6    1.1278   0.32416    
Residuals   950  2175.5     2.3                        
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Response HWC_H2 :
             Df  Sum Sq Mean Sq   F value    Pr(>F)    
(Intercept)   1 19224.2 19224.2 7960.3610 < 2.2e-16 ***
x             2   108.7    54.4   22.5055 2.821e-10 ***
surface       1     6.6     6.6    2.7264   0.09903 .  
x:surface     2     5.2     2.6    1.0835   0.33883    
Residuals   950  2294.2     2.4                        
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Response HWC_H3 :
             Df  Sum Sq Mean Sq   F value    Pr(>F)    
(Intercept)   1 22559.3 22559.3 9881.7894 < 2.2e-16 ***
x             2    61.7    30.8   13.5060 1.645e-06 ***
surface       1     6.0     6.0    2.6424    0.1044    
x:surface     2     2.2     1.1    0.4772    0.6207    
Residuals   950  2168.8     2.3                        
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Response HWC_H4 :
             Df  Sum Sq Mean Sq    F value    Pr(>F)    
(Intercept)   1 25630.2 25630.2 15211.6991 < 2.2e-16 ***
x             2    83.6    41.8    24.8200 3.112e-11 ***
surface       1     2.2     2.2     1.2957    0.2553    
x:surface     2     3.3     1.6     0.9765    0.3770    
Residuals   950  1600.7     1.7                         
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Response HWC_H5 :
             Df  Sum Sq Mean Sq    F value    Pr(>F)    
(Intercept)   1 26108.8 26108.8 15531.6214 < 2.2e-16 ***
x             2    51.7    25.9    15.3860 2.654e-07 ***
surface       1     0.4     0.4     0.2298   0.63181    
x:surface     2    14.1     7.1     4.2009   0.01526 *  
Residuals   950  1597.0     1.7                         
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

484 observations deleted due to missingness

HWC at Home

For these levels of satisfaction, no models seem to be significant. Simple effects do show, but must be interpreted with caution: even then, ventilation is leading.

[1] "General Manova Model - HWC at work"
             Df  Pillai approx F num Df den Df Pr(>F)    
(Intercept)   1 0.97438   7195.5      5    946 <2e-16 ***
x             2 0.01734      1.7     10   1894 0.0856 .  
surface       1 0.00898      1.7      5    946 0.1287    
x:surface     2 0.00491      0.5     10   1894 0.9124    
Residuals   950                                          
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] "simple effects"
 Response HWC_W1 :
             Df  Sum Sq Mean Sq    F value    Pr(>F)    
(Intercept)   1 28655.6 28655.6 23640.1433 < 2.2e-16 ***
x             2    11.8     5.9     4.8529  0.008001 ** 
surface       1     0.8     0.8     0.6370  0.424984    
x:surface     2     0.3     0.2     0.1278  0.880066    
Residuals   950  1151.6     1.2                         
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Response HWC_W2 :
             Df  Sum Sq Mean Sq    F value  Pr(>F)    
(Intercept)   1 27689.4 27689.4 22006.4772 < 2e-16 ***
x             2     6.5     3.2     2.5666 0.07733 .  
surface       1     2.1     2.1     1.6308 0.20190    
x:surface     2     1.8     0.9     0.7184 0.48782    
Residuals   950  1195.3     1.3                       
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Response HWC_W3 :
             Df  Sum Sq Mean Sq    F value  Pr(>F)    
(Intercept)   1 29139.4 29139.4 24603.5354 < 2e-16 ***
x             2    10.5     5.2     4.4230 0.01225 *  
surface       1     0.0     0.0     0.0390 0.84339    
x:surface     2     0.9     0.5     0.3873 0.67897    
Residuals   950  1125.1     1.2                       
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Response HWC_W4 :
             Df  Sum Sq Mean Sq    F value    Pr(>F)    
(Intercept)   1 28251.9 28251.9 25387.7897 < 2.2e-16 ***
x             2    11.3     5.7     5.0916  0.006317 ** 
surface       1     0.2     0.2     0.1667  0.683130    
x:surface     2     2.4     1.2     1.0859  0.338018    
Residuals   950  1057.2     1.1                         
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Response HWC_W5 :
             Df  Sum Sq Mean Sq    F value    Pr(>F)    
(Intercept)   1 29150.5 29150.5 22213.6194 < 2.2e-16 ***
x             2    13.7     6.8     5.2147  0.005593 ** 
surface       1     0.0     0.0     0.0242  0.876459    
x:surface     2     0.2     0.1     0.0594  0.942374    
Residuals   950  1246.7     1.3                         
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

484 observations deleted due to missingness